• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    KINETIC STUDIES OF HETEROGENEOUS BIOCATALYSIS USING THE ROTATING RING-DISK ENZYME ELECTRODE

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8108321_sip1_w.pdf
    Size:
    3.457Mb
    Format:
    PDF
    Download
    Author
    Kamin, Ralph Andrew
    Issue Date
    1980
    Keywords
    Kinematics.
    Immobilized enzymes.
    Advisor
    Wilson, George S.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    A rotating ring-disk electrode (RRDE) has been used to study heterogeneous catalytic reactions involving an immobilized enzyme. Glucose oxidase (E.C. 1.1.3.4.) has been immobilized by covalent attachment to a variety of disk electrode supports resulting in the rotating ring-disk enzyme electrode (RRDEE). Covalent attachment to graphitic oxide, platinum and carbon paste has been achieved using the bifunctional reagents glutaraldehyde or 1-ethyl-3(3-dimethyl amino-propyl)-carbodiimide. By varying the electrode rotation speed, the effects of external substrate mass transport on the rate of enzymatic catalysis have been investigated. Extremely small diffusion boundary layers (ca. 10-25 μm) at the disk catalytic support, under conditions of well defined and reproducible hydrodynamics, facilitate this investigation. The rate enzymatic catalysis is evaluated by spectrophotometrically monitoring the formation of the product H₂O₂ in the bulk solution. Peroxide may also be conveniently monitored amperometrically at the concentric platinum ring giving a steady-state response proportional to the substrate concentration. It is assumed that the enzyme obeys Michaelis-Menten kinetics. The intrinsic value of the heterogeneous apparent Michaelis-Menten constant (K'(m)) has been determined from Lineweaver-Burk plots for both methods of product detection. Catalysis limited rates are observed only when the electrode rotation speed is high (ω ≥ 1600 rpm) as established from linear Lineweaver-Burk plots and by calculating characteristic dimensionless parameters relating the ratio of the rate of catalysis to substrate mass transfer (e.g. the Damkoehler number and reaction velocity parameter). A careful characterization of the "immobilized enzyme layer" was necessary to evaluate the RRDEE as a viable model for these investigations. The specific activity of the immobilized enzyme was measured and related to the disk supports, immobilization procedures, and subsequent enzyme loading. Specific activities range from Whereas the effects of external mass transfer resistances may be eliminated at high rotation speeds, any internal or intra-enzyme layer resistances may not. Using chronoamperometric techniques for several disk electroactive species, it was shown that the the effect diffusion coefficients of small molecules within the enzyme layer are approximately 25 - 50% of the bulk solution value. K'(m) determined from the ring amperometric measurements was found to be slightly larger than values determined from the bulk solution detection of product and was attributed to the interenzyme diffusion of product. This, however, was shown not to interfere with product detection under conditions of catalysis limited rates.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.