• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    THE INFLUENCE OF ADJACENCY EFFECTS ON THE RESTORATION OF NOISY PHOTOGRAPHIC IMAGES

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8200324_sip1_m.pdf
    Size:
    4.412Mb
    Format:
    PDF
    Download
    Author
    Antos, Ronald Leon
    Issue Date
    1981
    Keywords
    Imaging systems in meteorology.
    Image processing.
    Advisor
    Burke, J. J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The objective of this study was to enable the removal of developer depletion and diffusion effects (i.e., adjacency effects from noisy photographic images, thus, providing a potential for improvement in the reliability of restored object and aerial image estimates. The investigation was based on the use of a previously formulated image resortation model which characterized the exposure, latent image and development interactions of the photographic process in terms of statistical estimation theory. This study addressed the application and appropriate modification of the formulated model in the removal of adjacency effects from noisy images of selected line targets. Literature pertaining to the initial observations of adjacency effects, their recognition as a nonlinear chemical development effect and the pertinent models (forward) used to predict their effects was reviewed. This was followed with a review of the statistical restoration (inverse) model and its comparison to previously derived forward models. X-ray quanta exposures were then used to obtain noisy photographic images, free of optical scattering effects, for the purpose of empirically determining a chemical spread function to characterize chemical adjacency effects. Photographic images were obtained that contained lines of 0.010, 0.100 and 1.000 mm widths to enable comparison between the magnitude of the chemical spread function and the Eberhard effect. A segmented polynomial (cubic spline function) approach was used to calculate the chemical spread function. Separate light quanta exposures were used to obtain gross grain density sensitometric curves and noisy line images. The covering power relationship between mass of developed silver and diffuse density was empirically derived for Panatomic-X film processed without agitation in D-76 developer (diluted 1:1). Emperical verification of the statistical restoration model was achieved. Chemical adjacency effects were successfully removed from noisy line images using an appropriately scaled version of the statistical restoration model. The spatial frequency content of the noisy line images was approximately 1, 10, 15, 20, 25 and 40 cycles/mm. The proportionality factor, used to scale the chemical spread function required in the restoration model, was found to be equivalent to the ratio of the empirically derived chemical spread function and a magnitude estimate of the Eberhard effect. The maximum diffuse density correction for edge effects was found to be 0.14, or approximately 11.1% of the gross grain density level, 1.20. Similar diffuse density corrections for fine line images were found to range between 0.14 and 0.36, or approximately 11.1% to 28.3% of the gross grain density level associated with a specific line element.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.