• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    THE STABLE CHANNEL AS SHAPED TO FLOW AND SEDIMENT

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8200325_sip1_w.pdf
    Size:
    8.473Mb
    Format:
    PDF
    Download
    Author
    Silverston, Elliot, 1951-
    Issue Date
    1981
    Keywords
    Stream channelization -- Mathematical models.
    Advisor
    Laursen, Emmett M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Stable channel design is a very important element in many water resources projects. Both bed and bank stability are necessary design criteria. The channel is designed for some critical flow rate and sediment load, where the bank erodibility, sediment size distribution, and channel resistance to flow are imposed conditions. For these conditions the stable channel width, depth, and slope are predicted. Earlier studies by Lacey, Blench, and others related the channel dimensions to the flow rate as a power function. In Blench's study the coefficient of the function was dependent on the nature and charge of the bed material, and the erodibility of the sides, while the exponent was a constant. This study extends the power function equation relationship. The width, depth, and width/depth ratio were considered functions of the flow rate, and the coefficients and exponents were both found to be dependent on the sediment concentration and the bank erodibility. The tractive force method was used in this analysis. A set of design graphs were determined from simultaneous solutions of the Manning and Laursen equations. From the graphs design equations were formulated. Some simple example problems were solved using this method. In the analysis the bank erodibility (maximum permissible bank shear) needed to be quantified. Experiments were performed with a Preston tube to determine the shear distributions in channels with various roughness patterns. From the results the maximum bank shear could be determined as a coefficient times the maximum bed shear. When the smooth channel and rough channel were tested, the results compared well with the values used by Lane (coefficient approximately 0.76). When the banks were smooth and the bed was rough, or vice versa, the coefficient was found to be different than 0.76. More testing is considered necessary to determine if the difference is significant.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Civil Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.