• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    EVIDENCE FOR A COMPOSITIONAL RELATIONSHIP BETWEEN ASTEROIDS AND METEORITES FROM INFRARED SPECTRAL REFLECTANCES

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8209705_sip1_m.pdf
    Size:
    3.986Mb
    Format:
    PDF
    Download
    Author
    Feierberg, Michael Andrew
    Issue Date
    1981
    Keywords
    Meteorites -- Composition.
    Asteroids -- Composition.
    Infrared spectroscopy.
    Advisor
    Larson, Harold P.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    High-resolution Fourier spectra in the 0.9-2.5 μm region were measured for sixteen asteroids. These data were combined with 0.3-1.1 μm spectrophotometry and 3.0-3.5 μm narrowband photometry for compositional analysis. Comparison spectra of meteorites and terrestrial minerals were measured in the laboratory, some under simulated asteroidal conditions of pressure and temperature. Spectra of eleven representative S-type asteroids show a range of olivine/pyroxene ratios overlapping those of ordinary and carbonaceous chondrites, but not approaching those of common differentiated meteorite types. The reddening in the asteroid spectra implies the presence of metallic iron, but if the metal is finely divided its abundance could be low. S-type asteroids have spectra most consistent with undifferentiated compositions, and some of them, especially 8 Flora, could be ordinary chondrite parent bodies. 4 Vesta and 349 Dembowska are unusual asteroids which have spectra resembling those of achondritic meteorites. Vesta has a pyroxene-feldspar mineralogy intermediate in composition between eucrites and howardites. If shergottite-like basalts are present, they must be in low abundance. Dembowska has an olivine-pyroxene mineralogy similar in some ways to ordinary chondrites, but there is considerable evidence that it is actually a fragment of the mantle of a differentiated Vesta-like parent body. The most diagnostic spectral feature seen on three low-albedo asteroids is the 3 μm band due to water of hydration. 1 Ceres must consist mostly of a low-iron clay mineral with some hydrated salts. 2 Pallas has a low abundance of hydrated minerals relative to Ceres, with the bulk of its composition being anhydrous iron-free silicates. 324 Bamberga probably contains clay minerals, but its spectrum is dominated by abundant magnetite. These and other C-type asteroids have surface compositions consistent with massive aqueous alteration of primary carbonaceous chondrite minerals. These results all indicate that the compositions of main belt asteroids are more closely related to the compositions of meteorites than was previously believed. S-type and C-type asteroids are undifferentiated assemblages of which ordinary and carbonaceous chondrites are an incomplete sample. Differentiated meteorites could be derived from the other relatively rare asteroid types.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Planetary Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.