• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    NEAREST NEIGHBOR REGRESSION ESTIMATORS IN RAINFALL-RUNOFF FORECASTING

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8526315_sip1_m.pdf
    Size:
    2.918Mb
    Format:
    PDF
    Download
    Author
    Karlsson, Magnus Sven
    Issue Date
    1985
    Keywords
    Rain and rainfall -- Forecasting.
    Flood forecasting.
    Advisor
    Yakowitz, Sidney
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The subject of this study is rainfall-runoff forecasting and flood warning. Denote by (X(t),Y(t)) a sequence of equally spaced bivariate random variables representing rainfall and runoff, respectively. A flood is said to occur at time period (n + 1) if Y(n + 1) > T where T is a fixed number. The main task of flood warning is that of deciding whether or not to issue a flood alarm for the time period n + 1 on the basis of the past observations of rainfall and runoff up to and including time n. With each decision, warning or no warning, there is a certain probability of an error (false alarm or no alarm). Using notions from classical decision theory, the optimal solution is the decision that minimizes Bayes risk. In Chapter 1 a more precise definition of flood warning will be given. A critical review (Chapter 2) of classical methods for forecasting used in hydrology reveals that these methods are not adequate for flood warning and similar types of decision problems unless certain Gaussian assumptions are satisfied. The purpose of this study is to investigate the application of a nonparametric technique referred to as the k-nearest neighbor (k-NN) methods to flood warning and least squares forecasting. The motivation of this method stems from recent results in statistics which extends nonparametric methods for inferring regression functions in a time series setting. Assuming that the rainfall-runoff process can be cast in the framework of Markov processes then, with some additional assumptions, the k-NN technique will provide estimates that converge with an optimal rate to the correct decision function. With this in mind, and assuming that our assumptions are valid, then we can claim that this method will, as the historical record grows, provide the best possible estimate in the sense that no other method can do better. A detailed description of the k-NN estmator is provided along with a scheme for calibration. In the final chapters, the forecasts of this new method are compared with the forecasts of several other methods commonly used in hydrology, on both real and simulated data.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Systems and Industrial Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.