• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Characterization of crystalline and solution-processable phthalocyanine assemblies by electrochemical, photoelectrochemical, and surface spectroscopic techniques

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9706156_sip1_c.pdf
    Size:
    17.19Mb
    Format:
    PDF
    Download
    Author
    Chen, Siying
    Issue Date
    1996
    Keywords
    Chemistry, Analytical.
    Chemistry, Organic.
    Engineering, Electronics and Electrical.
    Engineering, Materials Science.
    Advisor
    Armstrong, Neal R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Ultrathin organized films of organic electronic materials, such as phthalocyanines (Pc), are promising for both fundamental and applied studies due to their special optical, electronic and photoconductive properties. The studies presented in this dissertation include fabrication of ultrathin molecular assemblies by molecular beam epitaxy and Langmuir-Blodgett techniques. The degree of molecular order, extent of charge transfer and the morphology within these films, assessed by methodologies, such as photoelectrochemistry, electrochemistry, surface analysis and optical spectroscopy were discussed and characterized. Under high vacuum condition, a wide range of ordered structures of some trivalent metal phthalocyanines, such as GaPc-Cl, InPc-Cl and AlPc-F, can be fabricated. These materials exhibit "layer-by-layer" growth on the single crystal SnS₂ surface when deposited by molecular beam epitaxy (MBE). The MBE technique allows for closer packing of these highly ordered phthalocyanines than in self-assembled (SA) or Langmuir-Blodgett (LB) thin films, due to the lack of hydrocarbon side chains which are necessary for control of molecular architecture during SA or LB depositions. Several new solution processable substituted phthalocyanines are introduced, which due to their strong self-assembled tendency, may be suitable for the formation of well organized thin films by SA and LB techniques. It is found that the types of the substituents attached to the Pc rings play a significant role in determining both the aggregation tendency and the electrochemical properties of Pcs. Surface pressure-area isotherms of these substituted phthalocyanines show that there can be one or two stable phase transition regimes for monomolecular film at the air/water interface. On-trough spectroscopic studies of benzylalkoxy substituted phthalocyanines show that in the pressure-area region prior to the formation of the first stable phase extensive aggregation has occurred. Electrochemical studies of fully compressed films of substituted phthalocyanines on certain substrates show the presence of multiple electroactive domains, controlling the oxidation or reduction process of the Pc rings. Spectroelectrochemical studies of LB films of CuPcOC₂OBz suggest that the presence of both monomer and aggregates leads to the two separate oxidation processes.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.