• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Cellular and molecular mechanisms of 4-vinylcyclohexene-diepoxide induced ovotoxicity in rats

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9713391_sip1_c.pdf
    Size:
    11.41Mb
    Format:
    PDF
    Download
    Author
    Springer, Lisa Nicole, 1966-
    Issue Date
    1996
    Keywords
    Biology, Cell.
    Health Sciences, Toxicology.
    Biology, Animal Physiology.
    Advisor
    Hoyer, Patricia B.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    4-vinylcyclohexene diepoxide (VCD) is an environmental xenobiotic formed as a by-product in the manufacture of rubber and therefore potential human exposure is likely. VCD destroys half of the small pre-antral (25-100 μm) follicles in ovaries of rats following 15 days of dosing. The overall goal of this research, was to determine the mode and earliest time for identification of follicular destruction and examine the specificity of the response for 25-100 μm follicles. The particular involvement of protein synthesis and gene expression in this ovotoxic response was also examined. After daily dosing with VCD (80 mg/kg), the rate of protein synthesis in 25-100 μm follicles was inhibited following 3, 6, and 10 hr of in vitro incubation with VCD; whereas, the inhibition in the rate of protein synthesis at 3 hr in 25-100 μm follicles from untreated animals was reversed at 6 and 10 hr. Furthermore, follicular viability was compromised to a greater extent in 25-100 μm follicles from dosed versus untreated animals. Following 10 days of daily dosing with VCD, there was an increase in random DNA fragmentation in 25-100 μm follicles; however, there was not a reduction in the numbers of primordial and primary (25-100 μm) follicles. Morphological analysis showed changes characteristic of an apoptotic-like form of cell death in oocytes and granulosa cells of primordial and primary follicles 4 hr following 10 days of daily dosing. There was an increase in levels of mRNA for bax, manganese superoxide dismutase (MnSOD) and microsomal epoxide hydrolase (mEH) in 25-100 μm follicles following 10 days dosing with VCD, but the increase was not observed in large pre-antral (100-250 μm) follicles or liver. However, decreases in levels of mRNA for bax in liver and mEH in 100-250 μm follicles were observed. These results suggest that repeated dosing makes 25-100 μm follicles more susceptible to VCD-induced cellular changes and that VCD-induces an apoptotic-like form of cell death which is mediated through changes in levels of expression of genes associated with death of the follicular cells.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Physiological Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.