• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Localization of tachykinins and their receptormRNAs in the human hypothalamus and basal forebrain

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9713402_sip1_m.pdf
    Size:
    2.381Mb
    Format:
    PDF
    Download
    Author
    Chawla, Monica Kapoor, 1950-
    Issue Date
    1996
    Keywords
    Biology, Anatomy.
    Biology, Neuroscience.
    Biology, Cell.
    Advisor
    Rance, Naomi E.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Numerous studies in experimental animals have emphasized the importance of tachykinin peptides in hypothalamic function. There is however, little information on the location of these peptides in the human brain. In the first study, in situ hybridization was used to map the distribution of neurons expressing the substance P (SP) or neurokinin B (NKB) gene transcripts. The distribution of neurons containing tachykinin mRNAs was found to be distinct and complementary: SP was the predominant tachykinin in the striatum, posterior hypothalamus and intermediate, ventromedial and mammillary nuclei; there were more NKB mRNA containing neurons than SP neurons in the magnocellular basal forebrain, the bed nucleus, and the preoptic/anterior hypothalamic regions. Comparable numbers of neurons expressing both mRNAs were identified in the infundibular nucleus and amygdala. Because numerous neurons containing NKB mRNAs were identified in the nucleus basalis of Meynert, it was next determined if NKB mRNA and choline acetyltransferase (ChAT) mRNAs are colocalized in this region. It was found that approximately 30% of the cholinergic neurons in the nucleus basalis also expressed NKB gene transcripts. This is the first identification of peptide colocalization in a significant population of magnocellular cholinergic neurons in the human basal forebrain. The nucleus basalis of Meynert plays an important role in higher brain functions in humans. There is considerable evidence suggesting that SP and gonadotropin releasing hormone (GnRH) neurons are anatomically and functionally connected in the human brain. In this study, double in situ hybridization with 35S-labeled SP receptor (SPR) and digoxigenin-labeled GnRH riboprobes was used to determine if GnRH neurons contain SPR mRNAs. The radiolabeled GnRH riboprobe hybridized with scattered neurons in the preoptic-septal regions and medial basal hypothalamus. A digoxigenin-labeled GnRH probe labeled cells in the medial basal hypothalamus, the primate control center for reproduction. SPR mRNA was identified in numerous magnocellular basal forebrain neurons, however, GnRH neurons containing SPR mRNAs were not identified. Although the possibility that SPR mRNA may be present in these cells but below the level of detection remains, present data suggests that a link between SP and GnRH neurons does not exist in the human brain.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Cell Biology and Anatomy
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.