• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Expression and regulation of phytoene desaturase during maize seed development

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9713407_sip1_c.pdf
    Size:
    5.331Mb
    Format:
    PDF
    Download
    Author
    Hable, Whitney Elizabeth, 1967-
    Issue Date
    1996
    Keywords
    Biology, Molecular.
    Biology, Genetics.
    Biology, Plant Physiology.
    Advisor
    Oishi, Karen K.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    An essential component of development is the accumulation of specific metabolites in a temporal and tissue-specific manner. The growth regulator abscisic acid (ABA), which accumulates at a specific time during seed development, is required for seed maturation and prevents the premature developmental switch from dormancy to germination ABA accumulates differently in two tissues of the seed; levels in the embryo are several-fold higher than in the endosperm and the temporal accumulation of ABA is also different between these tissues. To begin to understand how ABA accumulation is regulated during seed development, the regulation of ABA biosynthesis was investigated. The approach taken was to examine the expression of the biosynthetic enzyme, phytoene desaturase (PDS), which catalyzes a regulated step in ABA synthesis in several other organisms (Bramley, 1985, Sandmann et al., 1989, Hugueney et al., 1992 and Giuliano et al., 1993). Unlike ABA accumulation, PDS transcript and protein levels were higher in the endosperm than in the embryo. The spatial difference in PDS levels did correlate with levels of the pathway intermediate, beta-carotene, suggesting that PDS may control the synthesis of ABA precursors while subsequent enzymes may regulate ABA accumulation. The temporal expression of Pds was also unrelated to ABA accumulation. In the endosperm, transcript levels were initially high and declined during desiccation while protein levels remained high throughout development. In the embryo, transcript levels were low and constant while protein levels declined. There are several maize mutants (viviparous mutants) disrupted in ABA biosynthesis, resulting in decreased levels of ABA and premature germination. Analysis of the Pds allele and transcript in the viviparous-5 mutant showed that the gene contains multiple insertions and deletions, giving rise to a larger transcript. In addition, the 55 kDa PDS protein was not detected in the vp5 mutant by immunoblot analysis, indicating that the vp5 phenotype results from a mutation at the PDS locus. To determine whether the wild type protein encoded by the ABA mutant, vp2, or the pathway intermediate, lycopene, regulate PDS, transcript and protein levels were compared in wild type and mutant (vp2 and vp7, respectively) seeds. The levels of PDS were not significantly different in vp2 or vp7 wild type and mutant seeds, suggesting that neither the VP2 protein nor lycopene regulate PDS at the steady-state transcript or protein level.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Genetics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.