Show simple item record

dc.contributor.advisorDenton, M. Bonneren_US
dc.contributor.authorTrue, James Bruce, 1967-
dc.creatorTrue, James Bruce, 1967-en_US
dc.date.accessioned2013-04-18T09:37:19Z
dc.date.available2013-04-18T09:37:19Z
dc.date.issued1996en_US
dc.identifier.urihttp://hdl.handle.net/10150/282244
dc.description.abstractGraphite furnace atomic absorption spectrometry has excellent detection limits and accepts a wide variety of samples with little or no sample preparation. The method does, however, suffer from matrix interferences and a lack of highly capable multielement instrumentation. Continuum sources have been employed to GFAAS for multielement determinations, but the one dimensional array detectors used in these instruments can only observe a limited spectral range, limiting the multielement capabilities of these instruments. A continuum source, multielement graphite furnace atomic absorption spectrometer was developed here which employed a prototype echelle polychromator with charge injection device(CID) detection. The detection system employed a new device, the CID∼38, and camera control unit, the SCM5000E, with previously unavailable abilities. The camera system was developed and evaluated to determine its spectroscopic characteristics, and reprogrammed to provide rapid, continuous monitoring of many absorption signals simultaneously. A data acquisition and analysis scheme was developed for the prototype system, and the instrument demonstrated detection limits comparable to single-element line source GFAAS. The low ultraviolet throughput of the prototype echelle limited the spectral range that could be observed. Light scattering inside the spectrometer caused the sensitivity to decrease as the number of elements observed increased. A second echelle spectrometer system with higher wavelength resolution and increased throughput in the far ultraviolet was incorporated in to the instrument. The new system increased the spectral range which could be monitored, allowing more elements farther in the ultraviolet to be determined. The detection limits for the new system are comparable to single-element GFAAS, but degrade farther in the ultraviolet due largely to decreasing source output.
dc.language.isoen_USen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectChemistry, Analytical.en_US
dc.titleInvestigation of the use of charge-injection-device detectors for multielement atomic absorption spectrometryen_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.identifier.proquest9720639en_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineChemistryen_US
thesis.degree.namePh.D.en_US
dc.description.noteThis item was digitized from a paper original and/or a microfilm copy. If you need higher-resolution images for any content in this item, please contact us at repository@u.library.arizona.edu.
dc.identifier.bibrecord.b34562667en_US
dc.description.admin-noteOriginal file replaced with corrected file October 2023.
refterms.dateFOA2018-06-14T19:31:32Z
html.description.abstractGraphite furnace atomic absorption spectrometry has excellent detection limits and accepts a wide variety of samples with little or no sample preparation. The method does, however, suffer from matrix interferences and a lack of highly capable multielement instrumentation. Continuum sources have been employed to GFAAS for multielement determinations, but the one dimensional array detectors used in these instruments can only observe a limited spectral range, limiting the multielement capabilities of these instruments. A continuum source, multielement graphite furnace atomic absorption spectrometer was developed here which employed a prototype echelle polychromator with charge injection device(CID) detection. The detection system employed a new device, the CID∼38, and camera control unit, the SCM5000E, with previously unavailable abilities. The camera system was developed and evaluated to determine its spectroscopic characteristics, and reprogrammed to provide rapid, continuous monitoring of many absorption signals simultaneously. A data acquisition and analysis scheme was developed for the prototype system, and the instrument demonstrated detection limits comparable to single-element line source GFAAS. The low ultraviolet throughput of the prototype echelle limited the spectral range that could be observed. Light scattering inside the spectrometer caused the sensitivity to decrease as the number of elements observed increased. A second echelle spectrometer system with higher wavelength resolution and increased throughput in the far ultraviolet was incorporated in to the instrument. The new system increased the spectral range which could be monitored, allowing more elements farther in the ultraviolet to be determined. The detection limits for the new system are comparable to single-element GFAAS, but degrade farther in the ultraviolet due largely to decreasing source output.


Files in this item

Thumbnail
Name:
azu_td_9720639_sip1_c.pdf
Size:
20.71Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record