• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Factors affecting the selectivity and efficiency of solid-phase extraction

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9720643_sip1_w.pdf
    Size:
    5.138Mb
    Format:
    PDF
    Download
    Author
    Raisglid, Margaret Ellen
    Issue Date
    1996
    Keywords
    Chemistry, Analytical.
    Advisor
    Burke, Michael F.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The modified surface of solid phase extraction sorbents is studied with respect to the impact on the isolation and purification of analytes. Interactions at the interface are characterized by quantifying recoveries of a broad range of analytes, on a variety of surfaces, and under various extraction conditions. Bonded phases of varying hydrocarbon chain length are studied. A hydrophobic surface (e.g., C18) favors the retention of small polar compounds, while a more polar surface (C2) favors the elution of larger hydrophobic compounds. A compromise phase (C8) improves overall recoveries, while analyte recoveries were optimized by extraction onto stacked and layered phases. Analytes are retained by different mechanisms and under different solvent conditions. Selective elution of analytes is achieved by judiciously choosing the elution solvent. Data obtained from comparing the time requirements for drying various phases are consistent with previously developed models of the bonded silica surface. The impact of the presence of water on the elution of analytes is also studied. Experiments are presented where increasing concentrations of organic solvent are added to the sample matrix. Recoveries for polar compounds dropped as the matrix became more energetically favorable. Recoveries improved for hydrophobic species as the formation of agglomerations was disrupted. The impact of sample loading rates on analyte recoveries is studied. No significant differences in recoveries of a broad range of non-ionizable analytes are observed for loading rates ranging from 8 to 30 mL per minute on a 13 mm diameter x 15 mm height sorbent bed. The impact of the porous nature of the extraction sorbent on analyte recoveries, under different conditions of temperature and solvent contact time, is studied. A dependence on the diffusion of analytes into and out of the pores is observed. Experiments are devised to characterize the role of particulates in the sample matrix during solid phase extraction. Parameters studied include size of particles in the matrix, in the sorbent bed, porosity of the frit retaining the sorbent, and utility of a depth filter. Samples laden with particulates are spiked with trace analytes and show no reduction in recoveries resulting from the presence of particulate matter.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.