• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA Catalogs

    Statistics

    Display statistics

    Fundamental aspects of particulate contamination of tungsten and thermal oxide wafers during chemical-mechanical polishing

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9729445_sip1_m.pdf
    Size:
    3.192Mb
    Format:
    PDF
    Download
    Author
    Chilkunda, Raghunath, 1965-
    Issue Date
    1997
    Keywords
    Chemistry, Inorganic.
    Physics, Condensed Matter.
    Engineering, Materials Science.
    Advisor
    Raghavan, Srini
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Chemical-mechanical polishing (CMP) has emerged as a new processing technique for achieving a high degree of planarity (< 10 μm) for submicron devices in very large scale integrated (VLSI) process technology. Metal as well dielectic films can be planarized using CMP. Polishing of tungsten (W) and interlayer dielectric (SiO₂) films is carried out using alumina (Al₂O₃) based slurries which typically contain acids, complexing and oxidizing agents. One of the challenges of CMP is the effective removal of slurry particles (e.g., Al₂O₃) that are deposited on the wafer (e.g., W) surface during polishing. Control of particulate deposition during CMP as well as the development of post CMP cleaning techniques to remove deposited particles require an understanding of the surface and solution chemistry of the wafers and particles under polishing conditions. In this research, an attempt is made to develop an understanding of the importance of the electrostatic interactions in particle deposition using electrokinetic potential data, particle deposition results from small scale polishing experiments and calculated interaction energies between a particle and wafer surface. The electrokinetic potential of tungsten, thermal oxide (SiO₂) wafers and alumina particles were measured as a function of solution chemistry. The measured electrokinetic potential data was used to calculate the interaction energy between an alumina particle and a wafer (e.g., W) surface using the well known DLVO (Derjaguin-Landau-Verwey-Overbeek) theory.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Science and Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.