• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Rapid reductive dechlorination of environmentally hazardous aromatic compounds and pesticides

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9729511_sip1_m.pdf
    Size:
    2.926Mb
    Format:
    PDF
    Download
    Author
    Grittini, Carina
    Issue Date
    1997
    Keywords
    Chemistry, Analytical.
    Environmental Sciences.
    Advisor
    Fernando, Quintus
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Organochlorine compounds, such as polychlorinated biphenyls (PCBs), pentachlorophenol (PCP), p,p'-DDE and Toxaphene, have been widely used in industry and agriculture for more than fifty years. Although they have served their purpose very effectively and at low cost, many of these compounds have been banned in the United States due to their persistence in the environment and their threat to human health. Their natural resistance to degradation has made organochlorine compounds the target of many studies that have been designed to convert them into less toxic compounds. At present there is not a single, simple method than can completely dechlorinate PCBs, PCP, p,p'-DDE and Toxaphene. The work presented here reports the use of a novel bimetallic system, palladized iron (Pd/Fe), to effect the complete dechlorination of these compounds, at ambient temperature and pressure, in a matter of minutes. The dechlorination reaction occurs on the surface of the palladized iron, with removal of all the chlorine atoms from the chlorinated compound and yields the completely dechlorinated molecule and chloride ions as reaction products. The chlorinated compound is reductively dechlorinated while the iron particles are oxidized to Fe²⁺ Water is also reduced in the presence of iron, generating hydrogen, which is collected in the palladium lattice. The palladium is therefore necessary to store hydrogen gas; the "Pd·H₂" acts as a powerful reducing agent and is primarily responsible for the rapid and complete dechlorination of the organochlorine compounds. The Pd/Fe bimetallic system is potentially useful for the large scale remediation of groundwater or soil contaminated with organochlorine compounds. Palladized iron is relatively inexpensive and easy to prepare, and it rapidly and completely dechlorinates organochlorine compounds. For these reasons, the Pd/Fe system should be investigated further for applications in the field.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.