• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Inelastic seismic response and ductility evaluation of steel frames with fully, partially restrained and composite connections

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9738951_sip1_m.pdf
    Size:
    3.403Mb
    Format:
    PDF
    Download
    Author
    Reyes-Salazar, Alfredo
    Issue Date
    1997
    Keywords
    Engineering, Civil.
    Advisor
    Haldar, Achintya
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The damage suffered by steel structures during recent strong earthquakes forced the profession to reevaluate issues related to the seismic design of steel structures. The evaluation of the maximum inelastic deformation of a structure subjected to a strong motion earthquake is a critical part of this process. A ductility parameter can also be used to calculate the maximum inelastic deformation of a structure. It is pointed that there is no unanimity on the definition of ductility, although it is constantly used in the profession. In this research several definitions of story ductility for MDOF systems are studied and the most appropriate one is identified. Definitions for local and global ductility are proposed. The presence of PR and composite connections on the structural response is also addressed in this study. Conventional analysis and design of steel frames structures is based on the assumptions that beam-to-column connection are either fully restrained (FR) or perfectly pinned (PP) connections. However, almost all steel connections used in practice are essentially partially restrained (PR) connections with different rigidities. The effect of PR and composite connections on the nonlinear seismic response of steel frames is evaluated. For this purpose, first the structural responses in terms of maximum interstory displacements and maximum top lateral displacements of three steel frames are calculated considering all of the frame connections to be of FR-type. Then the structural responses are evaluated for the frames with PR connections and finally for the frames with composite connections. Responses are compared for the three different cases. The recommendations to consider the effect of the vertical component on the structural response of two major seismic design guidelines for buildings are also studied. The first one is the National Earthquake Hazard Reduction Program (NEHRP) Recommended Provisions for Seismic Regulations for New Building (1994) and the second one is the Mexico City Seismic Code. Specifically, the effect of the vertical component on the structural responses of steel frames is evaluated first analytically and then according to the NEHRP Provisions and the Mexican Code. Finally, the analytical results are compared with the codes' recommendations.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Civil Engineering and Engineering Mechanics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.