• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Active vision inspection: Planning, error analysis, and tolerance design

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9806810_sip1_m.pdf
    Size:
    5.556Mb
    Format:
    PDF
    Download
    Author
    Yang, Christopher Chuan-Chi, 1968-
    Issue Date
    1997
    Keywords
    Engineering, Electronics and Electrical.
    Engineering, Industrial.
    Computer Science.
    Advisor
    Marefat, Michael
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Inspection is a process used to determine whether a component deviates from a given set of specifications. In industry, we usually use a coordinate measuring machine (CMM) to inspect CAD-based models, but inspection using vision sensors has recently drawn more attention because of advances that have been made in computer and imaging technologies. In this dissertation, we introduce active vision inspection for CAD-based three-dimensional models. We divide the dissertation into three major components: (i) planning, (ii) error analysis, and (iii) tolerance design. In inspection planning, the inputs are boundary representation (object centered representation) and an aspect graph (viewer centered representation) of the inspected component; the output is a sensor arrangement for dimensioning a set of topologic entities. In planning, we first use geometric reasoning and object oriented representation to determine a set of topologic entities (measurable entities) to be dimensioned based on the manufactured features on the component (such as slot, pocket, hole etc.) and their spatial relationships. Using the aspect graph, we obtain a set of possible sensor settings and determine an optimized set of sensor settings (sensor arrangement) for dimensioning the measurable entities. Since quantization errors and displacement errors are inherent in an active vision system, we analyze and model the density functions of these errors based on their characteristics and use them to determine the accuracy of inspection for a given sensor setting. In addition, we utilize hierarchical interval constraint networks for tolerance design. We redefine network satisfaction and constraint consistency for the application in tolerance design and develop new forward and backward propagation techniques for tolerance analysis and tolerance synthesis, respectively.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Electrical and Computer Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.