Show simple item record

dc.contributor.advisorSchooley, Larry C.en_US
dc.contributor.authorHu, Teck Hon, 1965-
dc.creatorHu, Teck Hon, 1965-en_US
dc.date.accessioned2013-04-18T09:46:18Z
dc.date.available2013-04-18T09:46:18Z
dc.date.issued1997en_US
dc.identifier.urihttp://hdl.handle.net/10150/282425
dc.description.abstractA rapidly growing interest in third generation Personal Communication Networks has underlined the importance of wireless multimedia systems that can support voice, video, images, files, or any combinations thereof. In order to ensure satisfactory quality of service (QoS) for individual multimedia traffic, a new analysis with a new user model based on circuit-switched direct-sequence Code Division Multiple Access (DS-CDMA) system is presented. The new user model is introduced to allow users to transmit data at multiple bit rates and to switch to other bit rates at any time. To facilitate performance analysis, each traffic type with rate s is assumed a probability ps for user k. To ensure satisfactory QoS, a new power control scheme is further proposed for a multimedia circuit-switched DS-CDMA system. Specifically, a new closed-form power control function is introduced to ensure quality of service for each traffic type and to achieve a better overall throughput at the same time. Central to the new closed-form power control function is a parameter called the traffic exponent. By introducing this parameter, the difficulty in obtaining an optimal closed-form power control function is reduced which simplifies the information feedback process from the base station to the mobile stations.
dc.language.isoen_USen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectEngineering, Electronics and Electrical.en_US
dc.titleA multirate DS-CDMA systemen_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.identifier.proquest9806811en_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineElectrical and Computer Engineeringen_US
thesis.degree.namePh.D.en_US
dc.description.noteThis item was digitized from a paper original and/or a microfilm copy. If you need higher-resolution images for any content in this item, please contact us at repository@u.library.arizona.edu.
dc.identifier.bibrecord.b3755539xen_US
dc.description.admin-noteOriginal file replaced with corrected file October 2023.
refterms.dateFOA2018-04-26T10:11:45Z
html.description.abstractA rapidly growing interest in third generation Personal Communication Networks has underlined the importance of wireless multimedia systems that can support voice, video, images, files, or any combinations thereof. In order to ensure satisfactory quality of service (QoS) for individual multimedia traffic, a new analysis with a new user model based on circuit-switched direct-sequence Code Division Multiple Access (DS-CDMA) system is presented. The new user model is introduced to allow users to transmit data at multiple bit rates and to switch to other bit rates at any time. To facilitate performance analysis, each traffic type with rate s is assumed a probability ps for user k. To ensure satisfactory QoS, a new power control scheme is further proposed for a multimedia circuit-switched DS-CDMA system. Specifically, a new closed-form power control function is introduced to ensure quality of service for each traffic type and to achieve a better overall throughput at the same time. Central to the new closed-form power control function is a parameter called the traffic exponent. By introducing this parameter, the difficulty in obtaining an optimal closed-form power control function is reduced which simplifies the information feedback process from the base station to the mobile stations.


Files in this item

Thumbnail
Name:
azu_td_9806811_sip1_c.pdf
Size:
1.509Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record