• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Effects of protein phosphatase inhibition and phosphatase gene disruption on p53 biochemistry and function

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9806819_sip1_c.pdf
    Size:
    8.901Mb
    Format:
    PDF
    Download
    Author
    Milczarek, Gavin Jon, 1968-
    Issue Date
    1997
    Keywords
    Biology, Genetics.
    Biology, Genetics.
    Advisor
    Bowden, G. Tim
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The protein phosphatase inhibitor okadaic acid (OA) previously has been shown to induce hyperphosphorylation of p53 protein both grossly and at specific tryptic peptide sites. However, the consequences of OA induced phosphorylation (and phosphorylation in general) on p53 function in vivo remain unclear. The focus of this study was to determine if hyperphosphorylation wrought by OA or expression of human p53 in protein phosphatase-deficient yeast strains could indeed regulate the interaction between p53 and a physiological downstream target, the cdk inhibitor, p21waf1. In S. pombe, one strain containing a mutant p53 (arg->his 175) and a type 1 protein phosphatase gene knockout was unable to grow whereas both parental strains were both able to thrive, indicating a possible gain of function related to p53 phosphorylation. Rat embryonic fibroblasts harboring a highly expressed mouse p53 transgene and a p53 null control cell line were treated with 50nM doses of OA. This treatment resulted in: (1) the formation and retention of acidic p53 protein isoforms, and, more specifically, phosphorylation of tryptic peptide sites in the transactivation domain, (2) an increase in p53 affinity for a p21waf1 promotor oligonucleotide, (3) an increase in cellular steady state levels of p21waf1 message, (4) an increase in p53-dependent transcriptional activity from a waf1 reporter construct, and (5) a G2/M cell cycle blockage that is associated with intact p53. These results demonstrate for the first time that hyperphosphorylation of p53 induced by OA may regulate a critical downstream affector of cell growth suppression in an intact cellular environment.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Molecular and Cellular Biology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.