• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Materials analysis using the (³He,p) and (α,p) nuclear reactions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9806856_sip1_m.pdf
    Size:
    3.499Mb
    Format:
    PDF
    Download
    Author
    Borgardt, James David, 1965-
    Issue Date
    1997
    Keywords
    Physics, Nuclear.
    Engineering, Materials Science.
    Advisor
    McIntyre, Laurence C., Jr.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Rutherford backscattering spectrometry (RBS) is a very versatile and popular technique in materials characterization. ⁴He⁺ ion beams in the keV or MeV range have been widely used to obtain quantitative information regarding the composition and depth distribution of elemental constituents and impurities in thin films. However, in many cases, RBS is ineffective for light element analysis due to overlapping signals caused by heavy elements in the film or backing material. This project proposes using the (³He,p) and (α,p) reactions to develop nuclear reaction techniques for light element analysis in cases where regular RBS cannot accurately determine elemental content. The (³He,p) nuclear reaction for boron, nitrogen, carbon and oxygen in thin films was investigated using incident beams between 2 and 4 MeV. Absolute cross sections were measured at reaction angles of 90° and 135°. These reactions were observed to have regions of constant cross section suitable for elemental content determination. The B(³He,p)C and ¹⁴N(³He,p)¹⁶O reactions were applied to thin films containing boron and nitrogen, and were proven to be an accurate means of determining elemental areal density in thin films in cases where regular RBS was ineffective due to signal interference from heavier elements in the film or backing substrate. Advantages and limitations of the application of the (³He,p) reaction to B, N, C and O will be discussed for each of these elements. The ¹⁹F(α,p)²²Ne nuclear reaction was investigated over the energy range 2200-2500 keV. Cross sections for the ¹⁹F(α,p₀) reaction were measured at a reaction angle of 135°. A strong, isolated resonance near 2315 keV was observed which is suitable for fluorine depth profiling. A computer program was also used to generate simulated yield curves. Resonance parameters were empirically fit to the yield curve obtained using a target with known areal density (atoms/cm²). The program, with these parameters, was applied to accurately simulate yield curves obtained from other targets. The advantages, limitations and applications of this reaction will be discussed.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Physics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.