• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Absorption and dispositional kinetics of 3,3',4,4'-tetrachloroazoxybenzene and 3,3',4,4'-tetrachloroazobenzene in the male Fischer-344 rat

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9814364_sip1_c.pdf
    Size:
    5.290Mb
    Format:
    PDF
    Download
    Author
    Ziegler, Thomas Lynn, 1961-
    Issue Date
    1997
    Keywords
    Health Sciences, Toxicology.
    Advisor
    Sipes, I. Glenn
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    3,3',4,4'-tetrachloroazoxybenzene (TCAOB), and 3,3',4,4'-tetrachloroazobenzene (TCAOB), which are structurally similar to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are formed as byproducts during the synthesis of industrial products. They exhibit Ah receptor binding characteristics and activities similar to those defined for TCDD in vitro at equal moral doses. However, they do not express toxicities in vivo at equal molar doses. The reduced in vivo toxicity can possibly be attributed to differences in the absorption and dispositional kinetics of TCAOB and TCAB as compared to TCDD. Thus, in this study, the absorption and dispositional kinetics of TCAOB and TCAB were examined in male F-344 rats. To address this, the animals received ¹⁴C-TCAB or ¹⁴C-TCAOB and the excretion of [¹⁴C] was monitored over 96 hr. For TCAB and TCAOB, the majority of the dose was eliminated within 48 hr regardless of the route of administration. The primary route of elimination was via the feces, and significant quantities of [¹⁴C] were eliminated in the urine. Pharmacokinetic parameters indicate that the compounds are readily cleared from the blood (TCAB: t₁/₂=4 hr, CLs=12 ml/kg(min); TCAOB t1/2=7 hr, CLs=12 ml/kg(min)). By contrast, TCDD has a half-life of 16-31 days and a elimination rate of 1-2% of the [¹⁴C] -dose per day in the bile/feces with no urinary elimination. Thus, TCAOB and TCAB are eliminated faster than TCDD. Urinary metabolite analysis following administration of TCAOB or TCAB revealed a variety of dichlorolaniline conjugates, which indicates the role of azo reduction in their formation. Several metabolites were present in the bile including glucuronide conjugates of dichloroaniline (DCA) and a putative glucuronide of TCAB (formed from TCAOB as well as TCAB). Clearly, the azo bond is responsible for the enhanced elimination of TCAOB and TCAB as compared to TCDD. The removal of the intestinal flora by the antibiotic pretreatment reduced the total reductive activity but did not eliminate it completely. This indicated that the rapid metabolism and elimination of these two compounds was a result of the combination of azo-reduction by both gut flora and mammalian tissues. The production of dichloroaniline by the in vitro liver homogenate strengthens this conclusion. Since dichloroaniline was produced over time by the liver enzymes following administration of either TCAOB or TCAB, the liver thus contributes to the reduction of the azo bond.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Pharmacology
    Toxicology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.