• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Molecular architecture of ordered thin films of crystalline organic dyes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9814373_sip1_m.pdf
    Size:
    7.180Mb
    Format:
    PDF
    Download
    Author
    Back, Andrew Scott
    Issue Date
    1997
    Keywords
    Chemistry, Analytical.
    Advisor
    Armstrong, Neal R.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The factors which determine the growth mode and molecular architecture of vacuum deposited organic thin films on single crystalline substrates were investigated. Specifically, the relative importance of layer planes in the bulk structure, lattice matching between the overlayer and substrate, topographic direction by the substrate, and specific molecule-substrate interactions, in determining the growth mode were examined. The majority of the molecules studied here (ClAlPc, F₁₆ZnPc, PTCDA, C4-PTCDI, and C5-PTCDI) exhibited layer planes in their bulk structures, however, the molecular plane is coincident with the layer plane only for PTCDA and ClAlPc. ClAlPc and F₁₆ZnPc were found to adopt different flat-lying commensurate square lattices on the Cu(100) surface. In both cases, the flat-lying orientation of the molecules was dictated by specific molecule-substrate interactions, while the orientation of the lattice was dictated by lattice matching with the substrate. ClAlPc was also able to adopt an incommensurate centered rectangular lattice whose orientation was directed by alignment along step edges. Fluorescence investigation of submonolayer PTCDA and PTCDI films on alkali halide substrates demonstrated the great potential of fluorescence spectroscopy as a means of monitoring film growth. PTCDA was found to adopt a flat-lying orientation on NaCl, KCl, and KBr, while a flat-lying orientation of the PTCDI molecules was determined by the strength of the molecule-substrate interactions. From these measurements, the relative interaction strengths of the substrates were determined to be KCl > KBr > NaCl. IR dichroism showed that the expected growth along the layer planes was found only to occur for PTCDA, due to the coincidence of the layer and molecular planes. IR spectroscopy also revealed that a new polymorph of C5-PTCDI had been formed on these surfaces. These studies showed that the relative importance of the factors in determining the molecular architecture adopted within the first 1-2 MLE of a film are: (1) molecule-substrate interaction, (2) lattice matching, (3) topographic direction, (4) layer planes in the bulk structure. In addition the use of fluorescence spectroscopy to probe the evolution of vacuum deposited films was significantly advanced.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.