• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A neural network approach for the solution of Traveling Salesman and basic vehicle routing problems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9814384_sip1_m.pdf
    Size:
    3.751Mb
    Format:
    PDF
    Download
    Author
    Ghamasaee, Rahman, 1953-
    Issue Date
    1997
    Keywords
    Applied Mechanics.
    Engineering, Industrial.
    Operations Research.
    Advisor
    Goldberg, Jeffrey B.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Easy to explain and difficult to solve, the traveling salesman problem, TSP, is to find the minimum distance Hamiltonian circuit on a network of n cities. The problem cannot be solved in polynomial time, that is, the maximum number of computational steps needed to find the optimum solution grows with n faster than any power of n. Very good combinatoric solution approaches including heuristics with worst case lower bounds, exist. Neural network approaches for solving TSP have been proposed recently. In the elastic net approach, the algorithm begins from m nodes on a small circle centered on the centroid of the distribution of cities. Each node is represented by the coordinates of the related point in the plane. By successive recalculation of the position of nodes, the ring is gradually deformed, and finally it describes a tour around the cities. In another approach, the self organizing feature map, SOFM, which is based on Kohonen's idea of winner takes all, fewer than m nodes are updated at each iteration. In this dissertation I have integrated these two ideas to design a hybrid method with faster convergence to a good solution. On each iteration of the original elastic net method two nx m matrices of connection weights and inter node-city distances must be calculated. In our hybrid method this has been reduced to the calculation of one row and one column of each matrix, thus, If the computational complexity of the elastic net is O(n x m) then the complexity of the hybrid method is O(n+m). The hybrid method then is used to solve the basic vehicle routing problem, VRP, which is the problem of routing vehicles between customers so that the capacity of each vehicle is not violated. A two phase approach is used. In the first phase clusters of customers that satisfy the capacity constrain are formed by using a SOFM network, then in the second phase the above hybrid algorithm is used to solve the corresponding TSP. Our improved method is much faster than the elastic net method. Statistical comparison of the TSP tours shows no difference between the two methods. Our computational results for VRP indicate that our heuristic outperforms existing methods by producing a shorter total tour length.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Applied Mathematics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.