• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Developments in atomic analysis and imaging utilizing scientific charge-transfer devices: Axial viewing of the inductively coupled plasma, advanced hollow cathode designs, and latent fingerprint imaging

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9814416_sip1_w.pdf
    Size:
    5.585Mb
    Format:
    PDF
    Download
    Author
    Radspinner, David Andrew, 1965-
    Issue Date
    1997
    Keywords
    Chemistry, Analytical.
    Advisor
    Denton, M. Bonner
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This document describes the development of spectroscopic techniques which benefit from the use of charge-transfer devices. Both charge-coupled devices (CCD's) and charge-injection devices (CID's) are used in the techniques presented here such as atomic emission spectroscopy and latent fingerprint imaging. The use of a CID echelle system for axial viewing of the inductively coupled plasma (ICP) demonstrates the enhancement in sensitivity that can be obtained over tangential viewing. More importantly though, are the advantages afforded by simultaneous multi-element detection. Axial viewing of the ICP has shown to not only improve upon the detection limits of several metals by, in some cases, a half order of magnitude, but also to increase the amount of light collected and thus reduce the time of analysis. Along with this, the effect of interferences upon the detection of various metals is, at worst, equivalent to that of an ICP with tangential viewing. Further enhancement of sensitivity in atomic analysis can be achieved by atomic fluorescence with an ICP. Although in the past, hollow cathode lamps have proven to be insufficient, advanced designs of hollow cathode lamps presented here have demonstrated an increase in the intensity of lines of copper best suited for use in ICP atomic fluorescence. Lastly, a latent fingerprint has been imaged with the use of a scientific CCD and a flashlight where in the past such a technique was accomplished with high power lasers. By using a CCD, the immediate digitization of information combined with the sensitivity and image processing capabilities offer a portable means by which to image latent fingerprints on poor surfaces.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.