• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Cenozoic tectonic evolution of the Ruby Mountains metamorphic core complex and adjacent basins: Results from normal-incidence and wide-angle multicomponent seismic data

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9814439_sip1_c.pdf
    Size:
    33.16Mb
    Format:
    PDF
    Download
    Author
    Satarugsa, Peangta, 1960-
    Issue Date
    1997
    Keywords
    Geology.
    Geophysics.
    Advisor
    Johnson, Roy A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Seismic studies in the area of the Ruby Mountains metamorphic core complex and adjacent basins of northeast Nevada provide new evidence for Cenozoic tectonic evolution of the Ruby Mountains. Results from interpretation of industry seismic data show that (1) asymmetric basins flanking the Ruby Mountains were created by normal faults beginning in the late Eocene-early Oligocene; (2) the metamorphic core complex detachment fault system was cut by the normal fault system; and (3) total subsidences of Huntington and Lamoille basins, and Ruby basins are ∼4.5 and ∼5.0 km. Analysis of crustal-scale 3-component normal-incidence to wide-angle seismic data shows that (1) the crust along the eastern flank of the Ruby Mountains can be divided into three layers corresponding to the upper, middle and lower crust; (2) upper crustal rocks likely consist of metaquartzite, schist, granite gneiss, and granite-granodiorite with P-wave velocities (Vp) of 5.80-6.25 km/s, S-wave velocities (Vs) of 3.20-3.72 km/s, Poisson's ratios (sigma) of 0.22-0.25, and anisotropy of 0.6-2.5%; (3) possible middle crustal rocks are paragranulite, felsic granulite, felsic amphibolite gneiss, granite-granodiorite, and mica-quartz schist with Vp of 6.35-6.45 km/s, Vs of 3.70-3.75 km/s, and σ of 0.24; (4) lower crustal rocks most likely consist of granulite- rather than amphibolite-facies rocks with Vp of 6.60-6.80 km/s, Vs of 3.85-3.92 km/s, σ of 0.24-0.25, and anisotropy of less than 3%; (4) depth to the Moho varies irregularly between 30.5 and 33.5. Interpretation of these results suggests that (1) Cenozoic extension of the Ruby Mountains and adjacent basins began by late Eocene-early Oligocene; (2) depth to Moho does not reflect local surface relief on the eastern flank of the Ruby Mountains and adjacent basin; (3) fluid-filled fractures and mafic large-scale underplating are unlikely in the lower crust; (4) the present seismic velocities of highly extended core complex crust and normally extended Basin and Range crust are similar; and (5) orientations of fast shear waves near the surface and in the upper crust are parallel to sub-parallel to the regional maximum horizontal compressive stress in the Nevada part of the Basin and Range province.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Geosciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.