We are upgrading the repository! A content freeze is in effect until November 22nd, 2024 - no new submissions will be accepted; however, all content already published will remain publicly available. Please reach out to repository@u.library.arizona.edu with your questions, or if you are a UA affiliate who needs to make content available soon. Note that any new user accounts created after September 22, 2024 will need to be recreated by the user in November after our migration is completed.

Show simple item record

dc.contributor.advisorKostuk, Raymonden_US
dc.contributor.authorGao, Qiang
dc.creatorGao, Qiang, 1964-en_US
dc.date.accessioned2013-04-18T09:55:02Z
dc.date.available2013-04-18T09:55:02Z
dc.date.issued1998en_US
dc.identifier.urihttp://hdl.handle.net/10150/282620
dc.description.abstractThe effects of wavefront conditioning on the performance of holographic optical data storage systems is investigated. The physical origins of various noise mechanisms which degrade the SNR of the holographic storage are studied for the thin phase (DCG) and the photoreflective crystal (LiNbO₃) recording materials. Dependence of the noise on various system parameters such as focal length, pixel size, number of pixels and material parameters are studied. An algorithm is developed to design pseudorandom phase masks which can improve the signal-to-noise ratio for a given system. The noise reduction by using pseudorandom phase mask and a Galilean configuration are investigated theoretically and experimentally. Significant improvement to the signal-to-noise ratio of holographic storage systems is demonstrated experimentally.
dc.language.isoen_USen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectEngineering, Electronics and Electrical.en_US
dc.titleNoise reduction techniques for holographic information storageen_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.identifier.proquest9829357en_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplineElectrical and Computer Engineeringen_US
thesis.degree.namePh.D.en_US
dc.description.noteThis item was digitized from a paper original and/or a microfilm copy. If you need higher-resolution images for any content in this item, please contact us at repository@u.library.arizona.edu.
dc.identifier.bibrecord.b3855401xen_US
dc.description.admin-noteOriginal file replaced with corrected file October 2023.
refterms.dateFOA2018-06-05T23:21:45Z
html.description.abstractThe effects of wavefront conditioning on the performance of holographic optical data storage systems is investigated. The physical origins of various noise mechanisms which degrade the SNR of the holographic storage are studied for the thin phase (DCG) and the photoreflective crystal (LiNbO₃) recording materials. Dependence of the noise on various system parameters such as focal length, pixel size, number of pixels and material parameters are studied. An algorithm is developed to design pseudorandom phase masks which can improve the signal-to-noise ratio for a given system. The noise reduction by using pseudorandom phase mask and a Galilean configuration are investigated theoretically and experimentally. Significant improvement to the signal-to-noise ratio of holographic storage systems is demonstrated experimentally.


Files in this item

Thumbnail
Name:
azu_td_9829357_sip1_c.pdf
Size:
29.92Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record