• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    INVESTIGATIONS OF POLYMER MEMBRANE ION-SELECTIVE ELECTRODES

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8028523_sip1_m.pdf
    Size:
    3.934Mb
    Format:
    PDF
    Download
    Author
    Martin, Charles Raymond
    Issue Date
    1980
    Keywords
    Electrodes, Ion selective.
    Ion-permeable membranes.
    Electrochemical analysis -- Data processing.
    Microcomputers.
    Advisor
    Freiser, Henry
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The lifetime of the polymer membrane ion-selective electrode is, in general, short when compared to that of the glass pH electrode. It is the manner in which the elctroactive materials are entrapped in the ion-selective membranes which accounts for this lifetime difference. In the polymer membrane electrode a high molecular weight electroactive material is dissolved in the plasticized polymer membrane. Because it is hydrophobic, this material is much more compatible with the low dielectric membrane phase than with the aqueous analyte phase. It, of course, has some solubility in the aqueous phase and, in time, leaches from the membrane. In the glass pH electrode, the electroactive material is the SiOH group which is covalently attached to the insoluble glass membrane. Because it is attached, it cannot be leached from the membrane. The purpose of this study was to investigate the possibility of covalently attaching the electroactive material to the polymer membrane in polymer membrane electrodes. In this weay, it was hoped that electrodes with much longer lifetimes could be obtained. Cation selective electrodes based on sulfonated polystyrene were investigated first. Sulfonation was accomplished by dipping polystyrene membranes into chlorosulfonic acid. Electrodes of both the conventional (i.e., with internal reference) and coated-wire types were prepared. Neither gave satisfactory response. Cation selective electrodes based on the perfluorinated, sulfonic acid containing ion exchange polymer NAFION 120® were investigated next. This material produced well-behaved Cs⁺ electrodes but electrodes responsive to larger cations (e.g., tetrapropylammonium and dodecyltri-methylammonium) could not be obtained. This may be due to ion-pairing in the membrane phase between these larger cations and the polymer bound sulfonate groups. To help answer some of the questions encountered during these investigations of electrodes based on covalently attached sulfonate groups, polymer membrane electrodes based on dinonylnaphthalenesulfonic acid were prepared and investigated. These electrodes were found to have very great selectivity for high molecular weight organic cations relative to inorganic and smaller organic cations. This type of selectivity is analogous to that obtained in ion pair solvent extraction of cations with a high molecular weight anionic species. Since a number of species of clinical, biological and toxicological interest are, at physiological pH, high molecular weight organic cations, electrodes based on dinonylnaphthalenesulfonic acid show great promise for determination of such species. An electrode for the determination of the drug phencyclidine was prepared to demonstrate the potentialities of drug analysis with this type of electrode. A microcomputer-based potentiometric analysis system was used to collect and analyze the data in this study. This system was one of the first stand-alone microcomputer systems employing a high level computer language to be described. The IMSAI 8080 Microcomputer and the computer language CONVERS were used.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.