• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Alterations in chemically-induced liver injury by immunomodulators

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9829392_sip1_c.pdf
    Size:
    15.28Mb
    Format:
    PDF
    Download
    Author
    Badger, Andrew Ashley, 1970-
    Issue Date
    1998
    Keywords
    Health Sciences, Toxicology.
    Health Sciences, Pharmacology.
    Advisor
    Sipes, I. Glenn
    Gandolfi, A. J.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Studies presented in this dissertation determined biochemical mechanisms underlying the modulation of chemical-induced liver injury by retinol and GdC₃ The first objective was to determine the role of inflammatory cells in the retinol potentiation of CCl₄-induced liver injury. Plasma alanine aminotranferase activities and histological analysis of liver sections both illustrated significant potentiation of CCl₄ hepatotoxicity by a single dose of retinol. The mechanism for this potentiation involves priming of Kupffer cells (KC) (i.e. by enhancing their response to toxic stimuli) as established by chemical inhibitors of KC, isolated KC, and immunohistochemical analysis of liver sections. Additional studies estimated the effect of retinol on non-inflammatory processes (i.e. cytochrome P450 (P450) activity). While total P450 content was not increased, the activity and concentration of CYP 2E1 were both significantly elevated following treatment with a single dose of retinol. These findings suggest that a single pretreatment with retinol potentiates CCl₄ hepatotoxicity by multiple mechanisms that involve increased biotransformation and inflammatory cell activities. Based on the findings with retinol, another immunomodulating agent, GdCl₃ might also alter the activity of hepatic biotransforming enzymes. Having established that GdCl₃ inhibits the activity of KC, the purpose of these studies was to determine the effect of GdCl₃ on the content and activity of hepatic P450. GdCl₃ treatment reduced total hepatic microsomal P450 as well as aniline hydroxylase activity by 30% in male and 20% in female rats. Hepatocytes isolated from rats pretreated with GdCl₃ were less susceptible to toxicity caused by CCl₄ but not cadmium, a hepatotoxic chemical not bioactivated by P450. Thus GdCl₃-mediated protection from toxicity in vivo might involve decreased biotransformation and inflammatory cell activities. Data presented in this dissertation suggest that, in addition to altering the inflammatory response to toxicants, retinol and GdCl₃ may modulate liver injury by altering the P450-mediated bioactivation of chemicals. Considering the multiple effects described here for each of these compounds, investigators should be cautious in the interpretation of data utilizing retinol or GdCl₃ to implicate KC as the sole contributor to toxicological mechanisms. This is especially important in models of chemical-induced injury in which bioactivation is a key feature.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Pharmacology & Toxicology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.