• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    PHYSICAL AND CHEMICAL CHARACTERIZATION OF TAILORED CHROMATOGRAPHIC ADSORBENTS

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_8028527_sip1_w.pdf
    Size:
    5.575Mb
    Format:
    PDF
    Download
    Author
    Dell'Ova, Vincent Edward
    Issue Date
    1980
    Keywords
    Gas chromatography.
    Aluminum oxide.
    Aluminum coatings.
    Chromatographic analysis.
    Advisor
    Burke, M. F.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The reaction between nitrogen-containing organic compounds (pyridines and amines) and alumina was studied through the use of chromatographic titrations and elemental analysis. The aluminum-nitrogen bond was the basis for the preparation of a series of new chromatographic adsorbents. A series of amines and pyridine homologs were bound to alumina and evaluated as chromatographic stationary phases. The surface coverage was determined using elemental analysis. The adsorption properties of the stationary phases were investigated by determining differential enthalpies, entropies, and free energies of adsorption for a selected group of organic moieties. Rate theory was used to examine further the interaction between the molecular probes and the tailored supports. Relative peak broadening was measured both as a function of flow rate and temperature to provide a chromatographic evaluation of molecular probe-adsorbent interaction occurring during the chromatographic process. Results indicated that the single-molecule moieties used as tailoring agents served as excellent deactivating agents but produced no significant changes in the selectivity of the adsorbents. Pellicular beads were synthesized by using 4-vinylpyridine as a linking agent between the alumina substrate and a series of polymers. The polymers used in this study were polystyrene, polymethylmethacrylate, and polyacrylonitrile. Each type of polymer-coated bead was prepared at different loading levels. Scanning electron microscopy was used to examine the gross change in the surface and elemental analysis used to determine the polymer loading. The adsorption properties of the polymeric pellicular supports were studied by determining the aforementioned thermodynamic quantities and by rate theory. The relative peak broadening was mentioned as a function of polymer type, loading, flow rate, and temperature. The chromatographic behavior of the selected molecular probes on the pellicular supports was sensitive to polymer type and loading. It was established that alumina can be modified with amines and pyridines and that a molecule possessing a nitrogen atom and a polymerization site can be used as an adhesive interface to chemically link polymeric phases to alumina. Currently, there are no commercially available modified aluminas. It has been demonstrated here that the preparation of such supports is feasible and can lead to chromatographically useful products.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.