• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Estimating crop yields by integrating the FAO Crop Specific Water Balance model with real-time satellite data and ground-based ancillary data

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9831840_sip1_m.pdf
    Size:
    3.715Mb
    Format:
    PDF
    Download
    Author
    Reynolds, Curt Andrew, 1960-
    Issue Date
    1998
    Keywords
    Agriculture, Agronomy.
    Engineering, Agricultural.
    Remote Sensing.
    Advisor
    Yitayew, Muluneh
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The broad objective of this research was to develop a spatial model which provides both timely and quantitative regional maize yield estimates for real-time Early Warning Systems (EWS) by integrating satellite data with ground-based ancillary data. The Food and Agriculture Organization (FAO) Crop Specific Water Balance (CSWB) model was modified by using the real-time spatial data that include: dekad (ten-day) estimated rainfall (RFE) and Normalized Difference Vegetation Index (NDVI) composites derived from the METEOSAT and NOAA-AVHRR satellites, respectively; ground-based dekad potential evapo-transpiration (PET) data and seasonal estimated area-planted data provided by the Government of Kenya (GoK). A Geographical Information System (GIS) software was utilized to: drive the crop yield model; manage the spatial and temporal variability of the satellite images; interpolate between ground-based potential evapo-transpiration and rainfall measurements; and import ancillary data such as soil maps, administrative boundaries, etc. In addition, agro-ecological zones, length of growing season, and crop production functions, as defined by the FAO, were utilized to estimate quantitative maize yields. The GIS-based CSWB model was developed for three different resolutions: agro-ecological zone (AEZ) polygons; 7.6-kilometer pixels; and 1.1-kilometer pixels. The model was validated by comparing model production estimates from archived satellite and agro-meteorological data to historical district maize production reports from two Kenya government agencies, the Ministry of Agriculture (MoA) and the Department of Resource Surveys and Remote Sensing (DRSRS). For the AEZ analysis, comparison of model district maize production results and district maize production estimates from the MoA (1989-1997) and the DRSRS (1989-1993) revealed correlation coefficients of 0.94 and 0.93, respectively. The comparison for the 7.6-kilometer analysis showed correlation coefficients of 0.95 and 0.94, respectively. Comparison of results from the 1.1-kilometer model with district maize production data from the MoA (1993-1997) gave a correlation coefficient of 0.94. These results indicate the 7.6-kilometer pixel-by-pixel analysis is the most favorable method. Recommendations to improve the model are finer resolution images for area planted, soil moisture storage, and RFE maps; and measuring the actual length of growing season from a satellite-derived Growing Degree Day product.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Agricultural & Biosystems Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.