• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Cell surface hydrophobicity of Pseudomonas aeruginosa: Effects of monorhamnolipid and substrate on fatty acid and lipopolysaccharide content

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9901682_sip1_m.pdf
    Size:
    2.519Mb
    Format:
    PDF
    Download
    Author
    Al-Tahhan, Ragheb Abdel-Razzak
    Issue Date
    1998
    Keywords
    Biology, Ecology.
    Biology, Microbiology.
    Environmental Sciences.
    Advisor
    Maier, Raina M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Cell surface hydrophobicity is a biosurfactant inducible parameter associated with increased biodegradation rates of hydrocarbons. Little is known about the types of physiological changes that are induced by a biosurfactant to change cell surface hydrophobicity. The objective of this study was to investigate the rhamnolipid-induced chemical and structural changes that cause the increase in cell surface hydrophobicity of two P. aeruginosa strains; P. aeruginosa ATCC 27853 and P. aeruginosa ATCC 9027. Both fatty acid and lipopolysaccharide content of cells were measured during growth on a soluble substrate; glucose, and a slightly soluble substrate; hexadecane in the presence and absence of monorhamnolipid. Cell surface hydrophobicity is a dynamic surface property that changes depending on strain, growth stage, substrate, and rhamnolipid addition. Results showed a general decline in the readily extractable lipid content that was correlated with increase in cell surface hydrophobicity. This decline took place only when growing cultures was supplied with rhamnolipid. In addition, rhamnolipid treatment caused a partial release of lipopolysaccharides (LPS) from the cells. This was indicated by KDO analysis and by SDS-PAGE analysis of LPS from culture supernatant. Also, LPS release from both strains was rhamnolipid concentration-dependent. Rates of LPS release from suspensions prepared from cells of both strains were highest at low rhamnolipid concentrations. Although increase in cell surface hydrophobicity was associated with LPS release, the amount of LPS released did not correlate with cell surface hydrophobicity. Rather the amount of LPS release was strain dependent. Cell surface ultrastructure revealed by scanning electron microscopy showed that the cells studied have a naturally rough surface. Cells grown in the presence of rhamnolipid had a smooth surface indicating a loss of the LPS from the outer membrane. Cells grown on hexadecane in the presence of rhamnolipid had deep pits on the cell surface which may act as hydrophobic sites that allow increased hexadecane absorption. These data suggest that biosurfactant addition caused LPS loss resulting in development of cell surface hydrophobicity.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Soil, Water and Environmental Science
    Degree Grantor
    University of Arizona
    Collections
    Dissertations
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.