• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Defining response pathways of budding yeast checkpoint genes

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9901699_sip1_c.pdf
    Size:
    24.24Mb
    Format:
    PDF
    Download
    Author
    Gardner, Richard Donald, 1967-
    Issue Date
    1998
    Keywords
    Biology, Molecular.
    Biology, Genetics.
    Biology, Cell.
    Advisor
    Weinert, Ted A.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Cell cycle events are ordered correctly; mitosis follows DNA replication. To ensure correct order, cells employ checkpoints that delay the cycle when DNA replication, repair, or spindle assembly have not been completed. In this dissertation, I have focused on the DNA damage checkpoint, which arrests the cell in G₂ in response to DNA damage (the G₂/M checkpoint). I have studied the roles of several checkpoint genes in the budding yeast Saccharomyces cerevisiae involved in the response to DNA damage, focusing on a key gene called MEC1. I have tested genetically where in several pathways checkpoint genes act: G₂/M checkpoint pathway. I found that after DNA damage, MEC1 signals G₂/M cell cycle arrest using two pathways, one involving RAD53 and DUN1, and the other involving PDS1. Both pathways must be functional for full checkpoint arrest; either pathway acting alone produces only a partial arrest. I speculate why there are two pathways for arrest. TEL1. I also tested the roles of TEL1, a putative MEC1 homolog. I showed that TEL1 has no normal checkpoint function. However, when overexpressed, TEL1 produces a constitutive G₂ delay, independent of DNA damage, a delay that requires the PDS1 pathway. This constitutive delay is responsible for the suppression by TEL1 of the UV sensitivity of mec1 mutants. When overexpressed, TEL1 also restores damage-inducible transcription to mec1 cells. I discuss TEL1's possible roles in checkpoint mediated responses. Essential function pathway. Previous results showed that MEC1 and RAD53 are also required for the transcriptional induction of repair genes and for an essential function. The nature of their essential function(s) remains unknown. My results, from a complex series of genetic tests, suggest that MEC1 and RAD53 share the same essential function, and that this function may in fact be related to the transcriptional function. I speculate on the nature of the essential function. I also present evidence that MEC1 and RAD53 may have a role in DNA replication. My results have led to refined models of pathways leading to checkpoint arrest, damage-inducible transcription, and an essential function(s).
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Molecular and Cellular Biology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.