• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA Catalogs

    Statistics

    Display statistics

    Interactions of beta-carotene with cigarette smoke in vitro

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9901773_sip1_m.pdf
    Size:
    2.234Mb
    Format:
    PDF
    Download
    Author
    Baker, Daniel Lee, 1970-
    Issue Date
    1998
    Keywords
    Health Sciences, Toxicology.
    Health Sciences, Pharmacology.
    Chemistry, Analytical.
    Advisor
    Liebler, Daniel C.
    French, Ed
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Recent intervention trials reported that smokers given dietary β-carotene supplementation were at increased risk of lung cancer and overall mortality. These results were unexpected based on previous observational epidemiology, which suggested β-carotene would decrease the onset of lung cancer in these individuals. The mechanism by which β-carotene supplementation results in increased lung cancer among smokers has yet to be defined. However, one proposed explanation is that β-carotene acts as a prooxidant in lungs exposed to cigarette smoke and exacerbates oxidative damage. This project has examined the consequences resulting from interactions of cigarette smoke with β-carotene in model systems. A novel β-carotene oxidation product, 4-nitro-β-carotene has been identified from smoke oxidation of beta-carotene in solution. This product has been isolated by both reverse-phase and cyano-column HPLC, and characterized by UV-vis spectroscopy, APCI-LC-MS, and NMR spectrometry. This class of products includes cis and all-trans isomers of 4-nitro-β-carotene. A new method for measuring primary products of lipid peroxidation has been developed. This method is specific and sensitive for the determination of 9- and 13-hydroxy fatty acid methyl esters of octadecadienoic acid as pentafluorobenzoyl esters by GC-ECD. These compounds are derived from the first stable products of linoleic acid oxidation. Using the method discussed above, the interactions between β-carotene and cigarette smoke were examined in a liposomal model system. DLPC liposomes showed little differences in oxidative damage with or without β-carotene incorporation. This result was consistent with gas-phase or whole smoke exposures. The effect of β-carotene on the oxidation of other antioxidants was also examined. Both the lipid soluble antioxidant α-tocopherol and the water soluble antioxidant ascorbate showed lower oxidation rates due to smoke exposure in the presence of β-carotene than without. These data indicate that β-carotene does not have prooxidant effects in this system. β-carotene is oxidized by cigarette smoke in model systems. 4-Nitro-β-carotene is one of several classes of products resulting from cigarette smoke oxidation of β-carotene. β-Carotene incorporation did not increase oxidation of lipid or other antioxidants upon smoke exposure. It is unlikely a prooxidant effect of β-carotene is responsible for increased lung cancer observed in recent intervention trials.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Pharmacology and Toxicology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.