• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA Catalogs

    Statistics

    Display statistics

    Muscle torque-total torque relationships at the shoulder and elbow: Rules for initiating multijoint arm movements

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9912153_sip1_m.pdf
    Size:
    2.307Mb
    Format:
    PDF
    Download
    Author
    Galloway, James Coleman
    Issue Date
    1998
    Keywords
    Health Sciences, Rehabilitation and Therapy.
    Biology, Animal Physiology.
    Health Sciences, Recreation.
    Biophysics, Medical.
    Advisor
    Koshland, Gail
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    One concept central to theories of multijoint control concerns the selection of muscles for the appropriate joint motion. For multijoint movements, a given muscle torque at an individual joint can lead to flexion, extension, or very little motion, since mechanical effects coming from other segments interact with muscle torque. This study quantified the contribution of muscle torque to initial joint motion for horizontal arm movements throughout the workspace. Previous studies of arm mechanics have been limited to a few movements or have focused on one joint. In contrast, this study reports data for both the shoulder and elbow joints. Moreover, a large number of movements were used for which direction, excursion, and distance were manipulated. Using high speed video recordings and techniques of inverse dynamics, a ratio of muscle torque to total torque was computed for each movement as a measure of contribution of muscle torque to joint acceleration. One consistent finding was that the muscle torque contribution consistently differed between the shoulder and elbow for most of the workspace. At one joint, muscle torque directly contributed to acceleration with negligible interaction torque ('direct' muscle torque contribution), thus the joint appeared to act as the launcher of the arm. At the other joint, both muscle and interaction torques contributed to joint acceleration ('complex' contribution), thus the joint appeared to be responding to mechanical effects from motion of the launcher. This contrast between joints may provide a simplifying feature for multijoint arm control. Specifically, only one of the two joints has complex mechanics, while the other joint, surprisingly, has simplified mechanics similar to a single joint in isolation. Movements in this study also demonstrated a three fold covariance (muscle torque contribution, movement direction, and the relative excursions of the shoulder and elbow) regardless of distance. A covariance of movement features, historically viewed as a confound, may provide a further simplification for arm control by reducing the unknowns; namely, the muscle torque contribution is associated with a resultant direction and joint excursions, or a direction or set of excursions is achieved by the associated muscle torque contribution.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Physiological Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.