• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The use of complex time singularity analysis in dynamical systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9912155_sip1_w.pdf
    Size:
    4.982Mb
    Format:
    PDF
    Download
    Author
    Hyde, Craig Lee, 1969-
    Issue Date
    1998
    Keywords
    Mathematics.
    Advisor
    Tabor, Michael
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Two new general results about dynamical systems are obtained using the characteristics of their complex time series solutions. These series are obtained locally around movable singularities in the complex time domain via methods which are an extension of the Painleve-Kovalevskaya test for integrability and which therefore have the advantage of being algorithmic in nature. The first of these results applies to autonomous polynomial vector fields and provides necessary and sufficient conditions for the existence of an open set of initial conditions for which the solutions will diverge to infinity as time (i.e. the independent variable) approaches some finite real value. The conditions for blow-up involve only the asymptotic leading order coefficient of the local series representation for the general solution around the complex time singularities. Additional analyses lead to the second result, which involves exponentially small separatrix splitting. When an autonomous system of ODE's possessing a homoclinic or heteroclinic orbit is perturbed by a rapidly oscillating non-autonomous term, the resulting splitting distance of the separatrix becomes exponentially small. Therefore, any first order approximation technique for measuring this splitting, e.g. the Melnikov vector, apparently loses its validity. An accurate expression for the splitting distance is valuable because it can be used to detect the presence of chaos in the system. Using only the local asymptotic forms of the solutions to the linearized variational equations and of the perturbation term, sufficient conditions on the perturbation amplitude such that the Melnikov vector gives the proper leading order splitting distance are found. This result applies to autonomous polynomial vector fields with periodic perturbations for which the amplitude of the perturbation is inversely proportional to some algebraic order of the frequency, and it depends only on the asymptotic form of the solutions near the complex time singularities.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Applied Mathematics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.