• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Effects of Nanoassembly on the Optoelectronic Properties of CdTe - ZnO Nanocomposite Thin Films for Use in Photovoltaic Devices

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_12575_sip1_m.pdf
    Size:
    22.65Mb
    Format:
    PDF
    Download
    Author
    Beal, Russell Joseph
    Issue Date
    2013
    Keywords
    Photovoltaics
    Quantum Dots
    Zinc Oxide
    Materials Science & Engineering
    Nanocomposite
    Advisor
    Potter, Barrett G., Jr.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Quantum-scale semiconductors embedded in an electrically-active matrix have the potential to improve photovoltaic (PV) device power conversion efficiencies by allowing the solar spectral absorption and photocarrier transport properties to be tuned through the control of short and long range structure. In the present work, the effects of phase assembly on quantum confinement effects and carrier transport were investigated in CdTe - ZnO nanocomposite thin films for use as a spectrally sensitized n-type heterojunction element. The nanocomposites were deposited via a dual-source, sequential radio-frequency (RF) sputter technique that offers the unique opportunity for in-situ control of the CdTe phase spatial distribution within the ZnO matrix. The manipulation of the spatial distribution of the CdTe nanophase allowed for variation in the electromagnetic coupling interactions between semiconductor domains and accompanying changes in the effective carrier confinement volume and associated spectral absorption properties. Deposition conditions favoring CdTe connectivity had a red shift in absorption energy onset in comparison to phase assemblies with a more isolated CdTe phase. While manipulating the absorption properties is of significant interest, the electronic behavior of the nanocomposite must also be considered. The continuity of both the matrix and the CdTe influenced the mobility pathways for carriers generated within their respective phases. Photoconductivity of the nanocomposite, dependent upon the combined influences of nanostructure-mediated optical absorption and carrier transport path, increased with an increased semiconductor nanoparticle number density along the applied field direction. Mobility of the carriers in the nanocomposite was further mediated by the interface between the ZnO and CdTe nanophases which acts as a source of carrier scattering centers. These effects were influenced by low temperature annealing of the nanocomposite which served to increase the crystallinity of the phases without modification of the as-deposited phase assembly and associated absorption properties. Integration of the nanocomposite as an n-type heterojunction element into a PV device demonstrated the ability to tune device response based on the spectral absorption of the nanocomposite sensitizer film as dictated by the phase assembly. Overall the various phase assemblies studied provided increased opportunity for optimization of the absorption and carrier transport properties of the nanocomposite thin films.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Materials Science & Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.