• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Characterization and molecular cloning of sos3: A gene important for salt tolerance and potassium nutrition in higher plants

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9946834_sip1_c.pdf
    Size:
    6.335Mb
    Format:
    PDF
    Download
    Author
    Liu, Jiping
    Issue Date
    1999
    Keywords
    Biology, Plant Physiology.
    Advisor
    Zhu, Jian-Kang
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The major goal of my dissertation research was to use genetic approaches to identify and characterize the components (genes) that are important for salt tolerance in Arabidopsis. Identification and characterization of such genes might provide insights into why these genes are important, and how these genes function in salt response and salt tolerance in higher plants. During my dissertation research, the sos3-1 mutant was isolated and characterized. The mutant plants are hypersensitive to Na⁺ and unable to grow with low K⁺. Increased Ca²⁺ levels can partially suppress the growth defect of the mutant plants under salt stress and fully restore their growth under low K⁺. These results suggest that SOS3 may be a Ca²⁺-mediated regulator that controls K⁺ and Na+ homeostasis in Arabidopsis. The SOS3 gene was cloned by map-based cloning techniques. SOS3 encodes a protein sharing significant sequence similarity with the B subunit of calcineurin from yeast and neuronal calcium sensor from animals. SOS3 contains three putative EF-hand calcium binding domains and a putative myristoylation motif at its NH₂-terminus. SOS3 binds calcium and is myristoylated in vitro. A mutation in SOS3 that destroys the conserved myristoylation motif abolishes SOS3 myristoylation, but not its calcium binding in vitro. Furthermore, the defect in Ca²⁺ binding of the sos3 does not affect its myristoylation. These results indicate the independence of calcium binding and myristoylation of SOS3. Mutant sos3-1 has a nine-base-pair deletion in the second conserved EF-hand Ca²⁺ binding domain, which leads to misfunction. of sos3 in vivo. To determine if myristoylation is also important for SOS3, the wild-type SOS3 cDNA and the SOS3 cDNA with a disrupted conserved myristoylation sequence were tested for their capability to complement the sos3-1. It was found that an intact conserved myristoylation sequence is essential for SOS3 function. These results indicate that both calcium binding and myristoylation are essential for the function of SOS3.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Plant Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.