• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Task-based assessment of a proposed phase-shifting interferometer/ellipsometer

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9957940_sip1_m.pdf
    Size:
    11.59Mb
    Format:
    PDF
    Download
    Author
    Rogala, Eric Waldemar
    Issue Date
    1999
    Keywords
    Mathematics.
    Physics, Optics.
    Advisor
    Barrett, Harrison H.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    In this dissertation, we offer a novel phase-shifting interferometer/ellipsometer. The uniqueness arises from the fact that this study is the consolidation of four distinct ideas drawn from the field of optics and the field of statistics. A conventional four-step phase-shifting interferometer is modified to allow for both TE and TM polarized measurements. Maximum-likelihood estimation theory is then used to extract the three parameters of interest, namely the real and imaginary components of the complex index of refraction and the surface profile. Finally, Cramer-Rao lower bounds serve as a quantitative means of assessing the particular system design at the task of estimating the three parameters in question. As we will show, the unknown parameters n, k and h are related to the measured irradiance in a complicated, nonlinear way. As such, no analytical expressions to estimate the unknown parameters from the measured data have been found. Rather, the unknown parameters are found numerically through a minimization program, developed and optimized specifically for this task. The results from our Monte Carlo simulations will show that conventional designs such as the Twyman-Green interferometer perform poorly at reconstructing n, k and h. The estimates on n and k exhibit bias, where the mean is not equal to the true value, and are non-efficient, where the standard deviation is greater than the Cramer-Rao lower bound. While the estimate of h is unbiased and efficient, the performance is an order of magnitude worse than the case where only h is to be estimated. By incorporating tilt in the design, the performance on all three parameters improves considerably. The estimates on n and k are shown to be unbiased and efficient, and the performance of the h estimator is equivalent to the h-only case. The dissertation culminates with the development of a Mach-Zehnder prototype. We demonstrate the feasibility of the proposed technique, and show how three system parameters, namely the incident amplitude and the relationship between the TE and TM polarized light in terms of amplitude and phase, affect the performance. We also show how quantization of the measured irradiance affects the performance.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.