• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Population genetics of incipient speciation in two species of jumping spiders (Salticidae: Habronattus) on the sky islands of southeast Arizona

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9927470_sip1_m.pdf
    Size:
    3.125Mb
    Format:
    PDF
    Download
    Author
    Masta, Susan Elaine
    Issue Date
    1999
    Keywords
    Biology, General.
    Biology, Ecology.
    Biology, Genetics.
    Advisor
    Maddison, Wayne P.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The population genetic forces that promote speciation, although well understood theoretically, are poorly known in nature. This dissertation focuses on the population genetics of allopatric speciation, using a system of jumping spiders (Araneae: Salticidae) whose populations are subdivided among the disjunct patches of mountain woodland habitat called "sky islands" in southeastern Arizona. I studied two species of salticids that apparently share similar histories of range fragmentation but differ greatly in their amount of intraspecific phenotypic divergence. Using sequence data from neutrally evolving mitochondrial genes, I investigated the population genetic factors influencing divergence. Analyses of gene trees for Habronattus oregonensis and H. pugillis revealed that neither gene flow, effective population size, mutation rate, nor differences in divergence time can explain the interspecific difference in phenotypic divergence. Instead, selection--in these animals, presumably sexual selection--must have acted differentially on traits encoded by nuclear loci to produce the discrepancy. A phylogeographic study of populations of H. pugillis may help clarify the influence of post-Pleistocene vegetational change on organisms dependent upon montane woodlands. Gene trees suggest limited migration between mountain ranges, but offer stronger evidence for incomplete lineage sorting. The trees provide no clear indication of the chronological sequence of woodland fragmentation, but suggest an old geographic division between northern and southern populations. Dates estimated for population divergence range from 26,000 to 291,000 years ago, but rely on molecular clock estimates from non-arachnid arthropods. Divergence estimates based on vegetation change data would require that the mutation rate be considerably faster in these spiders than in non-arachnid arthropods. Whereas there is no fossil-based molecular clock calibration for arachnids to judge whether this is likely, analyses of mitochondrial sequences from three Habronattus species do reveal other highly unusual features. For example, secondary structures that were inferred from DNA sequences of tRNA genes lack the TPsiC arm, and therefore are predicted not to form the standard tRNA cloverleaf. In addition, the 3' half of the gene encoding ribosomal 16S RNA appears to fold to a normal arthropod-like secondary structure, but the 5' half is extremely divergent and truncated with respect to other arthropods.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Ecology & Evolutionary Biology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.