• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Drug solubility studies by using combined solubilization techniques

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9960226_sip1_m.pdf
    Size:
    1.734Mb
    Format:
    PDF
    Download
    Author
    Li, Bing
    Issue Date
    2000
    Keywords
    Health Sciences, Pharmacology.
    Chemistry, Pharmaceutical.
    Advisor
    Yalkowsky, Samuel H.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    This study focuses on the development of mathematical models that explain and predict the combined effects of pH control and complexants (cyclodextrin), pH control and surfactants, as well as pH control and cosolvents on the total solubility of the drug. The total solubility of the drug is expressed as the sum of the concentrations of individual species. In complexant-water and surfactant-water systems free unionized drug [Dᵤ] and free ionized drug [Dᵢ] are present along with either complexed unionized drug [DᵤL] and complexed ionized drug [DᵢL], or micellar unionized drug [DᵤM] and micellar ionized drug [DᵢM], respectively. On the other hand, in cosolvent-water system the only species present are free unionized drug [Dcᵤ] and free ionized drug [Dcᵢ]. The equations developed show that a pH change favoring ionization of the drug not only increases the concentration of the ionized species in water, but also increases the concentration of the ionized species in cyclodextrins, micelles, or cosolvents. In fact, the concentration of the ionized species in the complexant, micelle, or cosolvent can be greater than those of the unionized species. The solubility data of flavopiridol and several other drugs reported in the literature support these conclusions. A mathematical model is also developed to describe the combined effect of cosolvency and complexation on non-polar drug solubilization. The total drug solubility is determined by the summation of three drug species present in the solution: free drug [D], drug-ligand binary complex [DL], and drug-ligand-cosolvent ternary complex [DLC]. The proposed equation describes the dependencies of these three species upon the intrinsic drug solubility, [Dᵤ], the cosolvent solubilizing power, sigma, the binary and ternary intrinsic complexation constants, K(b)ⁱⁿᵗ and K(t)ⁱⁿᵗ, and the cosolvent destabilizing powers for the binary and the ternary complexes, ρ(b) and ρ(t). The equation explains the decline in the solubility of fluasterone (a non-polar drug) produced by low cosolvent concentrations as well as the increase in the solubility produced by high cosolvent concentrations that are observed at all cyclodextrin concentrations.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Pharmaceutical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.