• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Statistical simulation of complex correlated semiconductor devices

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9960245_sip1_m.pdf
    Size:
    6.227Mb
    Format:
    PDF
    Download
    Author
    Peralta, Michael Olivas
    Issue Date
    1999
    Keywords
    Statistics.
    Engineering, Electronics and Electrical.
    Physics, General.
    Advisor
    Maier, Robert S.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The various devices (transistors, resistors, etc.) in an integrated semiconductor circuit have very highly coupled or correlated parametric inter-relationships. Adding to the complexity, are changes in the parametric values as the sizes and spacings between the devices change. This coupling is not in the form of interaction fields or forces but rather takes place through the correlation of parameters between different devices. These parametric correlations occur because of the processing of the semiconductor wafers through its manufacturing stages. The devices on each wafer have many n-type or p-type doped semiconductor layers in common because of being processed at the same temperature, or in the same gaseous environments, or in the same implantation sessions. In addition, each doped layer has variations over its different regions. All this results in very complex parametric interrelationships between the various devices within the integrated circuit. In turn these have very influential effects on the variation of key circuit characteristics. In spite of the tremendous importance of knowing and predicting these relationships, accurate methods of predicting these complex relationships between devices have evaded the semiconductor industry. The current methods used, such as statistically independent Monte Carlo simulation and Corner Models, either severely underestimate or severely overestimate the variation of key integrated circuit characteristics of interest. Either way, the current methods are very inaccurate. In order to meet this challenge, the methods covered in this dissertation have been developed and applied to the case at hand. They are based on applications of probability, statistics, stochastic, and random field theory, and various computer algorithms. Because of the accuracy, the ease with which device correlations are specified, and the use of computer algorithms, it is expected that the techniques described in this dissertation will be the way that accurate statistical integrated circuit simulations will be done by everyone in the industry. In addition, many of the concepts developed here can be applied to other complex correlated systems not necessarily involving semiconductors.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Physics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.