• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Determining the ages of impact events: Multidisciplinary studies using remote sensing and sample analysis techniques

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9960259_sip1_w.pdf
    Size:
    12.83Mb
    Format:
    PDF
    Download
    Author
    Grier, Jennifer Ann
    Issue Date
    1999
    Keywords
    Mineralogy.
    Physics, Astronomy and Astrophysics.
    Remote Sensing.
    Advisor
    McEwen, Alfred S.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The determination of the timing of impact events and the ages of cratered planetary surfaces is a complex and challenging undertaking. A powerful approach to this endeavor is a multidisciplinary study; understanding and using data from both rock samples and remote sensing. Shocked material (especially melt material) found in meteorites like Orvinio provides critical material dating impact craters. Orvinio, in spite of a complex degassing history shows evidence for multiple impacts at 4.2 Ga, 7.5 Ma, and possibly 330 Ma. Correlating impact histories for inner solar system bodies and the asteroid belt will constrain the genesis of impactor populations. Determining the recent cratering history of the Earth, however, is complicated by surface processes which erode and destroy impact craters. The Gardnos impact structure, for example, while possessing samples suitable for dating, has suffered substantial post-impact degassing due to metamorphism in the Caledonian orogeny ∼385 Ma. We must therefore look to the Moon to unravel the recent cratering history of the Earth-Moon system The Clementine mission data set provides an excellent resource for research into the bright rayed craters on the lunar surface. Studies of large rayed craters using the OMAT (optical maturity parameter) technique of Lucey and colleagues has revealed much information on the maturation of the crater ejecta. Profiles of OMAT values for the ejecta of large craters as a group show no evidence for an increase in the cratering rate during the Copernican era as advocated by Shoemaker. Future studies of both remote sensing and sample data will allow a better understanding of meteorite parent body impact histories and their implications for widespread epochs of increased impactor flux; the age-size correlation in lunar craters; the calibration of a large crater relative age scheme based on optical maturity with implications for the nature of the impactor flux in recent history; the nature of the recent small impactors on the lunar surface; implications for impact hazards on Earth today; and the best target sites for future landings and sample acquisition on the lunar surface.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Planetary Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.