Discrete event system homomorphisms: Design and implementation of quantization-based distributed simulation environment
dc.contributor.advisor | Zeigler, Bernard P. | en_US |
dc.contributor.author | Cho, Hyup Jae | |
dc.creator | Cho, Hyup Jae | en_US |
dc.date.accessioned | 2013-04-25T09:53:53Z | |
dc.date.available | 2013-04-25T09:53:53Z | |
dc.date.issued | 1999 | en_US |
dc.identifier.uri | http://hdl.handle.net/10150/284060 | |
dc.description.abstract | The demand for parallel and distributed discrete event simulation (PDES) is rapidly growing due to the advent of middleware programs which allow multiple processes running on one or more machines to interact across networks. High Level Architecture (HLA) proposed by DoD is the standard middleware designed for distributed simulation environment. DEVS/HLA, developed in this dissertation, is a parallel and distributed modeling and simulation environment which employs a sound system theory, modeling formalism (extended DEVS) and system homomorphisms in its design. The environment includes a highly efficient message filtering scheme called quantization and is based on a risk-free PDES simulation protocol that exploits simultaneous events. In its implementation, DEVS/HLA employs hierarchical and modular object-oriented technology. To the user it presents a high level modeling paradigm and a highly reliable distributed HLA-compliant environment. This dissertation presents an analysis of quantization-based message filtering and some very promising empirical results that clarify the tradeoff between reduced message bandwidth demand and error incurred due to message reduction. The results relate bandwidth utilization and error against quantum size for federations executing on DEVS/HLA in Unix and NT networking platforms in both LAN and WAN environments. The theoretical and empirical results indicate that predictive quantization can be very scaleable due to reduced local computation demands as well as having extremely favorable communication reduction/simulation fidelity tradeoffs. How the solution extends to real-time DEVS simulation and implications for the design of real time infrastructures are topics for further research. | |
dc.language.iso | en_US | en_US |
dc.publisher | The University of Arizona. | en_US |
dc.rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. | en_US |
dc.subject | Engineering, Electronics and Electrical. | en_US |
dc.subject | Computer Science. | en_US |
dc.title | Discrete event system homomorphisms: Design and implementation of quantization-based distributed simulation environment | en_US |
dc.type | text | en_US |
dc.type | Dissertation-Reproduction (electronic) | en_US |
thesis.degree.grantor | University of Arizona | en_US |
thesis.degree.level | doctoral | en_US |
dc.identifier.proquest | 9927479 | en_US |
thesis.degree.discipline | Graduate College | en_US |
thesis.degree.discipline | Electrical and Computer Engineering | en_US |
thesis.degree.name | Ph.D. | en_US |
dc.description.note | This item was digitized from a paper original and/or a microfilm copy. If you need higher-resolution images for any content in this item, please contact us at repository@u.library.arizona.edu. | |
dc.identifier.bibrecord | .b39560478 | en_US |
dc.description.admin-note | Original file replaced with corrected file September 2023. | |
refterms.dateFOA | 2018-09-06T00:39:51Z | |
html.description.abstract | The demand for parallel and distributed discrete event simulation (PDES) is rapidly growing due to the advent of middleware programs which allow multiple processes running on one or more machines to interact across networks. High Level Architecture (HLA) proposed by DoD is the standard middleware designed for distributed simulation environment. DEVS/HLA, developed in this dissertation, is a parallel and distributed modeling and simulation environment which employs a sound system theory, modeling formalism (extended DEVS) and system homomorphisms in its design. The environment includes a highly efficient message filtering scheme called quantization and is based on a risk-free PDES simulation protocol that exploits simultaneous events. In its implementation, DEVS/HLA employs hierarchical and modular object-oriented technology. To the user it presents a high level modeling paradigm and a highly reliable distributed HLA-compliant environment. This dissertation presents an analysis of quantization-based message filtering and some very promising empirical results that clarify the tradeoff between reduced message bandwidth demand and error incurred due to message reduction. The results relate bandwidth utilization and error against quantum size for federations executing on DEVS/HLA in Unix and NT networking platforms in both LAN and WAN environments. The theoretical and empirical results indicate that predictive quantization can be very scaleable due to reduced local computation demands as well as having extremely favorable communication reduction/simulation fidelity tradeoffs. How the solution extends to real-time DEVS simulation and implications for the design of real time infrastructures are topics for further research. |