• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Acetobacter diazotrophicus, a nitrogen-fixing bacterial endophyte of sugarcane: Analysis of nifHDK genes, plant colonization, and growth promotion

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9927492_sip1_m.pdf
    Size:
    6.908Mb
    Format:
    PDF
    Download
    Author
    Sevilla, Myrna Quijano
    Issue Date
    1999
    Keywords
    Agriculture, Agronomy.
    Biology, Molecular.
    Biology, Microbiology.
    Advisor
    Kennedy, Christine K.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Acetobacter diazotrophicus, a nitrogen-fixing bacterial endophyte, is believed to be responsible for biological nitrogen fixation (BNF) in sugarcane. However, no monocot has yet been unequivocally shown to receive fixed N through BNF. The main question addressed in this dissertation is whether A. diazotrophicus promotes plant growth, and if so, whether growth promotion is via BNF. Another question is whether the growth benefits can be extended to other grasses. To answer these questions, the nifHDK genes encoding the protein subunits of the nitrogenase enzyme were first isolated and sequenced. Secondly, Nif⁻ mutant strains were constructed by inserting a gene cassette in nifD. The growth of sugarcane plants inoculated with A. diazotrophicus wild type and Nif⁻ mutant strains were compared in growth chamber, greenhouse, and field experiments. A. diazotrophicus was also tagged with marker genes to investigate the colonization process in sugarcane and other grasses. The effect of A. diazotrophicus on the growth of other grasses was also determined. Analysis of the A. diazotrophicus NifHDK sequence revealed features typical of proteobacterial nifHDK genes and gene products. Phylogenetic analysis established the close relationship of A. diazotrophicus with the α-proteobacteria and the β-proteobacterium, Herbaspirillum seropedicae, another sugarcane endophyte. Nif⁻ mutant strains established endophytically in sugarcane plants equally well as wild type strains. ¹⁵N₂ incorporation experiments demonstrated that wild type strains but not the Nif⁻ mutants fixed N inside sugarcane plants with decreased fixation when plants were grown in medium with fixed N. In N-deficient conditions, sugarcane inoculated with wild type strains grew better and had higher total N content than either uninoculated or plants inoculated with Nif⁻ mutants. When N was not limiting, growth enhancement was observed in plants inoculated with either wild type or the Nif⁻ mutants. These results suggest that depending on the nitrogen condition, A. diazotrophicus promotes sugarcane growth via nitrogen fixation and other growth promoting factor. The results also indicated a possible strain-cultivar specificity in growth promotion. A. diazotrophicus colonized other grasses through different entry sites but was limited in the root. Under N-deficient conditions, wild type strain but not the Nif-- mutant promoted rice seedling growth indicating the beneficial effects of A. diazotrophicus to other grasses.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Plant Diseases
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.