• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Translational control of mRNA turnover in Saccharomyces cerevisiae

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9972122_sip1_m.pdf
    Size:
    2.164Mb
    Format:
    PDF
    Download
    Author
    Schwartz, David Clayton
    Issue Date
    2000
    Keywords
    Biology, Molecular.
    Advisor
    Parker, Roy
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Regulation of mRNA stability and mRNA translation are important components of gene expression within the eukaryotic cell. Multiple observations have suggested that the processes of translation and mRNA turnover are interrelated. Based on these observations, and the fact that the translation initiation machinery and the decapping enzyme both utilize the cap structure as a substrate, I hypothesized that these processes might be linked due to a competition at the cap between the cap binding complex and the decapping enzyme. Since disruption of translation using translational inhibitors or insertion of strong secondary structure within the 5' UTR affects the stability of mRNAs, I asked whether mutations within the translation initiation machinery itself would have a similar effect. I found that mutations in many different translation initiation factors led to an increase in the rate of mRNA turnover within the yeast cell. It was found that when the process of translation initiation is impaired in this manner that the rates of both deadenylation and decapping are increased. These results imply that the nature of the translation initiation complex bound to the 5' end of the mRNA is a critical component in determining mRNA half-life. One of the translation initiation factors, the cap binding protein eIF4E, is a logical candidate for a protein that might compete with the decapping enzyme for the cap structure. I purified the decapping enzyme and the cap binding protein from yeast and showed that addition of eIF4E could block decapping by the Dcp1p in an in vitro decapping assay. In addition, this inhibition was dependent on eIEF4E's ability to bind to the cap structure. This observation was then recapitulated in vivo by showing that an allele of eIF4E, which is unable to bind the cap structure, could suppress the decapping defect of the partially functional dcpl-1 allele. This same allele could not suppress the decapping defects of a lsm1Delta or pat1Delta, other mutations which affect decapping. These results argue that the translation initiation machinery acts as a physical block to the decapping enzyme and that decapping is composed of at least two genetically separable steps.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Molecular and Cellular Biology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.