• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Role of interleukin-6 signaling via the Jak/Stat pathway in human myeloma and effects on mediators of cell survival and proliferation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9992121_sip1_c.pdf
    Size:
    21.16Mb
    Format:
    PDF
    Download
    Author
    Oshiro, Marc Makoto
    Issue Date
    2000
    Keywords
    Biology, Cell.
    Health Sciences, Toxicology.
    Health Sciences, Pharmacology.
    Advisor
    Dalton, William S.
    Futscher, Bernard W.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Multiple myeloma is a B-cell malignancy characterized by the latent accumulation in bone marrow of monoclonal plasma cells with a low proliferative index and an extended life span. Interleukin-6 (IL-6) is the major survival factor for myeloma tumor cells and induces signaling through the Signal Transducer and Activator of Transcription (STAT) proteins. We report that one STAT family member Stat3, is constitutively activated in bone marrow mononuclear cells from patients with multiple myeloma and in the IL-6-dependent human myeloma cell line, U266. U266 cells are shown to constitutively overexpress Bcl-XL protein when compared to the IL-6 independent, Stat3 negative, human myeloma cell line 8226. Comparison of the two cell lines reveals that U266 cells are inherently resistant to Fas-mediated apoptosis and cytotoxic drugs when compared to 8226 cells. Inhibition of the IL-6/Jak2/Stat3 pathway in U266 cells by the Jak kinase inhibitor, AG490, or dominant negative Stat3 expression construct (Stat3/3) results in downregulation of Bcl-XL expression, and enhanced sensitivity to Fas-mediated apoptosis. Treatment of myeloma patient specimens with AG490 was sufficient to inhibit Stat3 phosphorylation and activation of Stat3. In addition, AG490 downregulated the expression of Bcl-XL mRNA and protein as determined by RNase protection assay (RPA) and flow cytometry, respectively. We also found that ectopic overexpression of Bcl-XL rescued Fas-induced apoptosis in U266 cells following inhibition of the Jak2/Stat3 pathway. Furthermore, enforced overexpression of Bcl-XL increased the resistance of U266 cells to chemotherapeutic drugs. However, instead of sensitizing U266 cells to drug-induced apoptosis, the JAK inhibitor AG490 antagonized drug-induced apoptosis. The inhibition of drug-induced apoptosis by AG490 was due to inhibition of cyclin D1 expression resulting in cell cycle arrest. These studies demonstrate that IL-6 induced activation of the Jak2/Stat3 pathway controls the expression of several genes that regulate cell proliferation and survival. Two of these genes are Bcl-XL and cyclin D1. Blocking Stat3 activation enhanced sensitivity of U266 myeloma cells to Fas-mediated apoptosis but reduced the efficacy of cell-cycle dependent cytotoxic drugs.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Pharmacology & Toxicology
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.