• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Automating test generation for discrete event oriented real-time embedded systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9992141_sip1_m.pdf
    Size:
    4.156Mb
    Format:
    PDF
    Download
    Author
    Cunning, Steven J., 1963-
    Issue Date
    2000
    Keywords
    Engineering, Electronics and Electrical.
    Engineering, System Science.
    Computer Science.
    Advisor
    Rozenblit, Jerzy W.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The purpose of this work is to provide a method for the automatic generation of test scenarios from the behavioral requirements of a system. The goal of the generated suite of test scenarios is to allow the system design to be validated against the requirements. The benefits of automatic test generation include improved efficiency, completeness (coverage), and objectivity (removal of human bias). The Model-based Codesign method is refined by defining a design process flow. This process flow includes the generation of test suites from requirements and the application of these tests across multiple levels of the design path. An approach is proposed that utilizes what is called a requirements model and a set of four algorithms. The requirements model is an executable model of the proposed system defined in a deterministic state-based modeling formalism. Each action in the requirements model that changes the state of the model is identified with a unique requirement identifier. The scenario generation algorithms perform controlled simulations of the requirements model in order to generate a suite of test scenarios applicable for black box testing. A process defining the generation and use of the test scenarios is developed. This process also includes the treatment of temporal requirements which are considered separately from the generation of the test scenarios. An algorithm is defined to combine the test scenarios with the environmental temporal requirements to produce timed test scenarios in the IEEE standard C/ATLAS test language. An algorithm is also defined to describe the behavior of the test environment as it interprets and applies the C/ATLAS test programs. Finally, an algorithm to analyze the test results logged while applying the test scenario is defined. Measurements of several metrics on the scenario generation algorithms have been collected using prototype tools. The results support the position that the algorithms are performing reasonably well, that the generated test scenarios are adequately efficient, and that the processing time needed for test generation grows slowly enough to support much larger systems.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Electrical and Computer Engineering
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.