• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    High-resolution millimeter-wave spectroscopy of metal-containing species: Examining fundamental ligand interactions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_3108952_sip1_m.pdf
    Size:
    10.37Mb
    Format:
    PDF
    Download
    Author
    Sheridan, Phillip Michael
    Issue Date
    2003
    Keywords
    Chemistry, Inorganic.
    Chemistry, Physical.
    Advisor
    Ziurys, Lucy M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Millimeter-wave spectroscopy has been used in this thesis to accomplish two main goals: (1) to study bonding, structural, and electronic properties of small, metal-bearing molecules in their ground electronic states, in particular how individual metal atoms bond to small ligands, and (2) to provide rest frequencies for radio astronomical searches of metal containing species in the interstellar medium. The types of molecules studied in this thesis can be broadly classified into three groups: (1) alkali and alkaline-earth amides (MNH₂), (2) diatomic molecules in high electron spin or high orbital angular momentum electronic ground states (MX), and (3) transition metal cyanides (MCN). In this first category, the pure rotational spectra of LiNH₂ (X¹A₁), LiND₂ (X¹A₁), NaND₂ (X¹A₁), MgNH₂ (X²A₁), and MgND₂ (X²A₁), were recorded and analyzed. For each, the first experimental monomer r₀ structures were determined. These species were found to be planar and not invert, in contrast to ammonia. In addition, for the alkaline-earth amides, the M-N bond appears to become less ionic from Sr to Ca to Mg. The second class of molecules investigated, high-spin diatomcs, includes: NaC(X⁴Σ⁻), CrN(X⁴Σ⁻), CrO(X⁵Πᵣ), MnF(X⁷Σ⁺), FeN(X²Δᵢ), FeC(X³Δᵢ), and TiF(X⁴Φᵣ). These species represent examples of electronic states that have never or seldom been observed by high-resolution millimeter-wave spectroscopy, due to their high values of electron spin and orbital angular momenta. The analysis of their spectra has been used to test the adequacy of the effective Hamiltonians developed to model their rotational spectra; in particular the use of theoretically predicted higher order parameters. The final group studied includes the transition metal cyanides CoCN (X3Φᵢ ) and NiCN (X2Δᵢ). Unlike their alkali, alkaline-earth, and group 13 counterparts, these species were determined to be linear cyanides with the metal atom bonded to carbon, similar to both CuCN (X1Σ⁺) and ZnCN (X2Σ⁺). For both molecules, complications in the rotational spectra due to the Renner-Teller effect were observed and analyzed.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Chemistry
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.