Structural damage identification in the frequency domain
dc.contributor.advisor | Nikravesh, Parviz E. | en_US |
dc.contributor.author | Wang, Dexin | |
dc.creator | Wang, Dexin | en_US |
dc.date.accessioned | 2013-04-25T10:06:05Z | en |
dc.date.available | 2013-04-25T10:06:05Z | en |
dc.date.issued | 1999 | en_US |
dc.identifier.uri | http://hdl.handle.net/10150/284350 | en |
dc.description.abstract | This study presents novel approaches for direct damage identification of structures in the frequency domain. Relations between structural stiffness variations and measured system responses are formulated, thus opening the possibility of locating structural damage in terms of the reduction in the local stiffness when analytical baseline models are not available. After this, the related identifiability is discussed under the noise-free condition. In identifying damage in structural points, generic joint elements with only translational degrees of freedom are defined to parameterize the stiffness variations in the joints. Since ill-conditioning is a common problem in system identification and damage detection, a solution regularization based on parameter subset selection is proposed and used with least squares methods. A substructure-based parameter-recursive algorithm is developed for selecting parameter subsets to make use of the fact that the damage is local in structures. The proposed methods are verified by various simulated examples in which systematic modeling errors are present. Finally, the methods are also applied to the degradation identification of a vehicle structure. | |
dc.language.iso | en_US | en_US |
dc.publisher | The University of Arizona. | en_US |
dc.rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. | en_US |
dc.subject | Engineering, Civil. | en_US |
dc.subject | Engineering, Mechanical. | en_US |
dc.title | Structural damage identification in the frequency domain | en_US |
dc.type | text | en_US |
dc.type | Dissertation-Reproduction (electronic) | en_US |
thesis.degree.grantor | University of Arizona | en_US |
thesis.degree.level | doctoral | en_US |
dc.identifier.proquest | 9927513 | en_US |
thesis.degree.discipline | Graduate College | en_US |
thesis.degree.discipline | Aerospace and Mechanical Engineering | en_US |
thesis.degree.name | Ph.D. | en_US |
dc.identifier.bibrecord | .b39569974 | en_US |
refterms.dateFOA | 2018-09-06T02:56:49Z | |
html.description.abstract | This study presents novel approaches for direct damage identification of structures in the frequency domain. Relations between structural stiffness variations and measured system responses are formulated, thus opening the possibility of locating structural damage in terms of the reduction in the local stiffness when analytical baseline models are not available. After this, the related identifiability is discussed under the noise-free condition. In identifying damage in structural points, generic joint elements with only translational degrees of freedom are defined to parameterize the stiffness variations in the joints. Since ill-conditioning is a common problem in system identification and damage detection, a solution regularization based on parameter subset selection is proposed and used with least squares methods. A substructure-based parameter-recursive algorithm is developed for selecting parameter subsets to make use of the fact that the damage is local in structures. The proposed methods are verified by various simulated examples in which systematic modeling errors are present. Finally, the methods are also applied to the degradation identification of a vehicle structure. |