• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Diffraction wavefront analysis of computer-generated holograms

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9946803_sip1_c.pdf
    Size:
    23.04Mb
    Format:
    PDF
    Download
    Author
    Chang, YuChun
    Issue Date
    1999
    Keywords
    Physics, Optics.
    Advisor
    Burge, James H.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Computer-generated holograms (CGHs) use diffraction to create wavefronts of light with desired amplitude and phase variations. The amplitude control is well known. But the sensitivity of phase, which is most important for some applications, such as interferometry, is less known. This dissertation studies phase errors resulted from design and fabrication limitations of CGHs. Fabrication uncertainties of CGHs are primarily responsible for the degradation of the quality of wavefronts generated by CGHs. In this dissertation, the binary linear diffraction model is introduced to study wavefront phase errors caused by substrate figure errors, pattern distortion, grating duty-cycle and etching depth errors. Wavefront sensitivity functions derived from diffraction model provide analytical solutions to estimate phase deviations due to duty-cycle or phase depth variations. The results of the wavefront sensitivity analysis also enable us to identify hologram structures that are the most sensitive, as well as the least sensitive to fabrication uncertainties. Experiments were conducted to validate the diffraction model. Example error budgets for common CGH optical testing configurations are demonstrated. In addition, a graphical representation of the diffraction fields is introduced. It provides an intuitive way for diffraction wavefront analysis and explains phase discontinuous observed in the diffraction model. Scalar diffraction models are commonly used in CGH analysis and modeling due to their computational simplicity compared with rigorous diffraction models. The validity of the scalar diffraction models becomes unclear when they are used to analyze diffractive elements with wavelength-scaled features. This dissertation discusses the validity of the scalar diffraction models with giving emphasis to wavefront phase. Fourier modal method (FMM) derived from rigorous diffraction theory is used to study a binary zone plate. The result of this analysis is compared with experimental data, This study shows that polarization sensitivities of the hologram are almost negligible for the chrome-on-glass zone plate with a minimum ring spacing of 2lambda. This result implies that scalar diffraction models may still be sufficient for modeling the phase from holograms with wavelength-scaled diffraction features for the case studied in this dissertation.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.