• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A study of structure in M33 using adaptive optics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9720710_sip1_m.pdf
    Size:
    2.825Mb
    Format:
    PDF
    Download
    Author
    Wittman, David Michael, 1968-
    Issue Date
    1996
    Keywords
    Physics, Astronomy and Astrophysics.
    Advisor
    McCarthy, Donald W., Jr.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    FASTTRAC (Fast Adaptive Secondary for Tip-Tilt Removal by Automatic Centroiding) is a tip-tilt secondary system which increases the angular resolution of images taken at Steward Observatory's 90" Bok and 61" Bigelow telescopes. K band imagery is gathered with the facility infrared camera and wavefront sensing is done with a small format charge-coupled device (CCD). I examine desirable characteristics of wavefront-sensing CCDs and evaluate the performance of the device used in FASTTRAC according to those criteria. The main drawback of the device is its low quantum efficiency due to frontside illumination. The read noise of the system is adequate, particularly for FASTTRAC which is generally assigned to bright time. The increased angular resolution provided by FASTTRAC is desirable for imaging crowded fields, such as those found in Local Group galaxies. Stellar photometry is a more powerful tool for studying the structure of these galaxies than is surface photometry, in which the light from all types of stars is mixed together. In particular, the distribution of old stars is representative of the underlying mass distribution, so these stars may be used to measure the overdensity in the arms of spiral galaxies. FASTTRAC was used to observe fields in M33, the nearest spiral which is not seen edge-on. These fields were observed in a range of seeing conditions and with guide stars of varying magnitudes and positions relative to the fields of interest. I analyze the performance of FASTTRAC in these varying conditions and offer some advice to future FASTTRAC observers. I also analyze the crowding in the M33 fields and conclude that, to K∼16.5, it does not vary significantly with placement in or outside of a spiral arm. Therefore a coarsely-sampled, wide field survey of the populations of M33 will not be systematically biased by crowding. Therefore a survey covering 35' by 25' was conducted in I and K bands, covering all of M33 out to a deprojected radius of 16'. The resulting star catalogs reach a depth of about I=21.5 and Ks When plotted on a color-magnitude diagram, these stars separate into a young population of red supergiants and an older population of red giants. The giants are old enough to have experienced many orbits and are thus representative of the mass distribution of the galaxy. The fraction of K-band light which is "young" is only 5-10% indicating that surface photometry in general would not be terribly biased, but there are local variations in which the young component is much stronger. Fourier decomposition of the old catalog reveals significant amplitudes (up to 0.5), indicating that the galaxy does indeed contain local overdensities, which supports the basic idea of spiral density wave theory. The strongest component in M33 is one-armed or lopsidedness, with some power in the two-armed component and much less in the higher-order components. The two-armed component may in fact represent a bar in the inner few arcminutes.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Astronomy
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.