Show simple item record

dc.contributor.advisorMarathay, Arvind S.en_US
dc.contributor.authorShiefman, Joseph, 1947-
dc.creatorShiefman, Joseph, 1947-en_US
dc.date.accessioned2013-05-09T09:04:09Z
dc.date.available2013-05-09T09:04:09Z
dc.date.issued1997en_US
dc.identifier.urihttp://hdl.handle.net/10150/288742
dc.description.abstractAmplitude stellar interferometry systems are often limited by signal-to-noise ratio. When the limiting noise is photon noise it is possible to increase the signal-to-noise ratio simply by increasing the observation time. When the source signal is extremely faint, the source signal may be overwhelmed by noises associated with the detection system. In these cases it is not possible to get an acceptable signal-to-noise ratio by increasing the observation time. It is for these faint object observations that the achromatic Michelson stellar interferometer (AMSI) is proposed. The AMSI uses N sub-systems, each sub-system being of the same design as a conventional Michelson stellar interferometer (MSI). The light from these N sub-systems is combined in such a way so as to produce a single set of "white light" fringes. By increasing the signal by a factor of N, the AMSI produces a significant increase in signal-to-noise ratio. This dissertation first presents the theory behind the conventional MSI. Results are given from tolerancing the conventional MSI. The tolerancing is performed both with a computer model and with parallel analytical calculations. A chart which summarizes the tolerance results is presented near the end of Chapter 4. The theory behind the AMSI is stated along with the limitations of this method. A method for extending the AMSI through spectral multiplexing is also given. Tolerancing of the AMSI is also performed, again using both a computer model and parallel calculations. The AMSI is found to provide an increase in detectability of faint sources provided that it can be supplied with an adequate fringe-locking system or used in a space-based environment.
dc.language.isoen_USen_US
dc.publisherThe University of Arizona.en_US
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.en_US
dc.subjectPhysics, Optics.en_US
dc.titleAn achromatic Michelson stellar interferometeren_US
dc.typetexten_US
dc.typeDissertation-Reproduction (electronic)en_US
thesis.degree.grantorUniversity of Arizonaen_US
thesis.degree.leveldoctoralen_US
dc.identifier.proquest9814362en_US
thesis.degree.disciplineGraduate Collegeen_US
thesis.degree.disciplinePhilosophyen_US
thesis.degree.namePh.D.en_US
dc.description.noteThis item was digitized from a paper original and/or a microfilm copy. If you need higher-resolution images for any content in this item, please contact us at repository@u.library.arizona.edu.
dc.identifier.bibrecord.b37741524en_US
dc.description.admin-noteOriginal file replaced with corrected file April 2023.
refterms.dateFOA2018-09-06T04:16:05Z
html.description.abstractAmplitude stellar interferometry systems are often limited by signal-to-noise ratio. When the limiting noise is photon noise it is possible to increase the signal-to-noise ratio simply by increasing the observation time. When the source signal is extremely faint, the source signal may be overwhelmed by noises associated with the detection system. In these cases it is not possible to get an acceptable signal-to-noise ratio by increasing the observation time. It is for these faint object observations that the achromatic Michelson stellar interferometer (AMSI) is proposed. The AMSI uses N sub-systems, each sub-system being of the same design as a conventional Michelson stellar interferometer (MSI). The light from these N sub-systems is combined in such a way so as to produce a single set of "white light" fringes. By increasing the signal by a factor of N, the AMSI produces a significant increase in signal-to-noise ratio. This dissertation first presents the theory behind the conventional MSI. Results are given from tolerancing the conventional MSI. The tolerancing is performed both with a computer model and with parallel analytical calculations. A chart which summarizes the tolerance results is presented near the end of Chapter 4. The theory behind the AMSI is stated along with the limitations of this method. A method for extending the AMSI through spectral multiplexing is also given. Tolerancing of the AMSI is also performed, again using both a computer model and parallel calculations. The AMSI is found to provide an increase in detectability of faint sources provided that it can be supplied with an adequate fringe-locking system or used in a space-based environment.


Files in this item

Thumbnail
Name:
azu_td_9814362_sip1_c.pdf
Size:
44.11Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record